File size: 10,935 Bytes
e437acb 9067733 03d287b ddadf19 9067733 03d287b 9067733 ddadf19 90a3b7b e437acb ddadf19 622fc67 002a9f8 ddadf19 9067733 10da50f e437acb 9067733 73cb092 10da50f 91f288a 10da50f 73cb092 10da50f 9067733 622fc67 03d287b 9067733 10da50f 9067733 e437acb 90a3b7b e437acb 90a3b7b e437acb fa7b864 e437acb fa7b864 e437acb 9067733 73cb092 9067733 73cb092 9067733 73cb092 9067733 e437acb 73cb092 90a3b7b 73cb092 8577ade ddadf19 73cb092 91f288a 73cb092 6f38faa 73cb092 91f288a 6f38faa 91f288a 6f38faa 91f288a 8577ade 91f288a 10da50f 91f288a 73cb092 91f288a 73cb092 91f288a 73cb092 10da50f 73cb092 10da50f 73cb092 ddadf19 90a3b7b 73cb092 27cb655 73cb092 27cb655 fd56c8a 73cb092 5f48853 9067733 27cb655 91f288a 002a9f8 91f288a 002a9f8 91f288a 952b15c 91f288a 10da50f 91f288a 8577ade 91f288a 002a9f8 91f288a 002a9f8 91f288a 8577ade 91f288a 27cb655 952b15c 622fc67 952b15c 90a3b7b 952b15c 90a3b7b 952b15c 9067733 622fc67 952b15c 73cb092 622fc67 952b15c 622fc67 952b15c 622fc67 952b15c 622fc67 90a3b7b 27cb655 91f288a 90a3b7b 27cb655 90a3b7b 952b15c 27cb655 952b15c 90a3b7b 73cb092 90a3b7b 27cb655 90a3b7b 27cb655 622fc67 73cb092 27cb655 73cb092 622fc67 bda5dad 9067733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import subprocess
subprocess.run(["sh", "tddfa/build.sh"])
import gradio as gr
from gradio.components import Dropdown
import cv2 as cv
import torch
from torchvision import transforms
from DeePixBiS.Model import DeePixBiS
import yaml
import numpy as np
import pandas as pd
from skimage.io import imread, imsave
# from tddfa.TDDFA import TDDFA
from tddfa.utils.depth import depth
from tddfa.TDDFA_ONNX import TDDFA_ONNX
import torch.optim as optim
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
import io
import uuid
import numpy as np
from PIL import Image
import boto3
from utils.blur_filter import filter_frames
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '4'
app_version = 'dsdg_vid_3'
device = torch.device("cpu")
labels = ['Live', 'Spoof']
PIX_THRESHOLD = 0.45
DSDG_THRESHOLD = 80.0
DSDG_FACTOR = 1000000
DSDG_PERCENTILE = 40
MIN_FACE_WIDTH_THRESHOLD = 210
examples = [
['examples/1_1_21_2_33_scene_fake.jpg'],
['examples/frame150_real.jpg'],
['examples/1_2.avi_125_real.jpg'],
['examples/1_3.avi_25_fake.jpg']]
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml')
tfms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# deepix_model = DeePixBiS(pretrained=False)
# deepix_model.load_state_dict(torch.load('./DeePixBiS/DeePixBiS.pth'))
# deepix_model.eval()
depth_config_path = 'tddfa/configs/mb1_120x120.yml' # 'tddfa/configs/mb1_120x120.yml
cfg = yaml.load(open(depth_config_path), Loader=yaml.SafeLoader)
tddfa = TDDFA_ONNX(gpu_mode=False, **cfg)
cdcn_model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
cdcn_model = cdcn_model.to(device)
weights = torch.load('./DSDG/DUM/checkpoint/CDCN_U_P1_updated.pkl', map_location=device)
cdcn_model.load_state_dict(weights)
optimizer = optim.Adam(cdcn_model.parameters(), lr=0.001, weight_decay=0.00005)
cdcn_model.eval()
class Normaliztion_valtest(object):
"""
same as mxnet, normalize into [-1, 1]
image = (image - 127.5)/128
"""
def __call__(self, image_x):
image_x = (image_x - 127.5) / 128 # [-1,1]
return image_x
def find_largest_face(faces):
# find the largest face in the list
largest_face = None
largest_area = 0
for face in faces:
x, y, w, h = face
area = w * h
if area > largest_area:
largest_area = area
largest_face = face
return largest_face
def extract_face(img):
face = None
if img is None:
return face
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = faceClassifier.detectMultiScale(
grey, scaleFactor=1.1, minNeighbors=4)
if len(faces):
face = find_largest_face(faces)
return face
def deepix_model_inference(img, bbox):
x, y, x2, y2 = bbox
faceRegion = img[y:y2, x:x2]
faceRegion = tfms(faceRegion)
faceRegion = faceRegion.unsqueeze(0)
mask, binary = deepix_model.forward(faceRegion)
res_deepix = torch.mean(mask).item()
cls_deepix = 'Real' if res_deepix >= PIX_THRESHOLD else 'Spoof'
confidences_deepix = {'Real confidence': res_deepix}
color_deepix = (0, 255, 0) if cls_deepix == 'Real' else (255, 0, 0)
img_deepix = cv.rectangle(img.copy(), (x, y), (x2, y2), color_deepix, 2)
cv.putText(img_deepix, cls_deepix, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_deepix)
cls_deepix = 1 if cls_deepix == 'Real' else 0
return img_deepix, confidences_deepix, cls_deepix
def get_depth_img(img, bbox):
bbox_conf = list(bbox)
bbox_conf.append(1)
param_lst, roi_box_lst = tddfa(img, [bbox_conf])
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=True)
depth_img = depth(img, ver_lst, tddfa.tri, with_bg_flag=False)
return depth_img
def analyze_face(img):
face = extract_face(img)
if face is None:
return img, (), None
x, y, w, h = face
x2 = x + w
y2 = y + h
bbox = (x, y, x2, y2)
if w < MIN_FACE_WIDTH_THRESHOLD:
color_dsdg = (0, 0, 0)
text = f'Small res ({w}*{h})'
cv.rectangle(img, (x, y), (x2, y2), color_dsdg, 2)
cv.putText(img, text, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
# cls_dsdg = -1
return img, bbox, None
depth_img = get_depth_img(img, bbox)
return img, bbox, depth_img
def prepare_data_dsdg(images, boxes, depths):
transform = transforms.Compose([Normaliztion_valtest()])
files_total = len(images)
image_x = np.zeros((files_total, 256, 256, 3))
depth_x = np.ones((files_total, 32, 32))
for i, (image, bbox, depth_img) in enumerate(
zip(images, boxes, depths)):
x, y, x2, y2 = bbox
depth_img = cv.cvtColor(depth_img, cv.COLOR_BGR2GRAY)
image = image[y:y2, x:x2]
depth_img = depth_img[y:y2, x:x2]
image_x[i, :, :, :] = cv.resize(image, (256, 256))
# transform to binary mask --> threshold = 0
depth_x[i, :, :] = cv.resize(depth_img, (32, 32))
image_x = image_x.transpose((0, 3, 1, 2))
image_x = transform(image_x)
image_x = torch.from_numpy(image_x.astype(float)).float()
depth_x = torch.from_numpy(depth_x.astype(float)).float()
return image_x, depth_x
def dsdg_model_inference(imgs, bboxes, depth_imgs):
with torch.no_grad():
map_score_list = []
image_x, map_x = prepare_data_dsdg(imgs, bboxes, depth_imgs)
# get the inputs
image_x = image_x.unsqueeze(0)
map_x = map_x.unsqueeze(0)
inputs = image_x.to(device)
test_maps = map_x.to(device)
optimizer.zero_grad()
scores = []
map_score = 0.0
for frame_t in range(inputs.shape[1]):
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = cdcn_model(inputs[:, frame_t, :, :, :])
score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])
score = score_norm.item()
if score > 10:
score = 0.0
scores.append(score * DSDG_FACTOR)
map_score += score_norm
return scores
def inference(img, dsdg_thresh):
face = extract_face(img)
if face is not None:
x, y, w, h = face
x2 = x + w
y2 = y + h
bbox = (x, y, x2, y2)
# img_deepix, confidences_deepix, cls_deepix = deepix_model_inference(img, bbox)
img_dsdg, confidences_dsdg, cls_dsdg = dsdg_model_inference(img, bbox, dsdg_thresh)
return img, {}, 2, img_dsdg, confidences_dsdg, cls_dsdg
else:
return img, {}, None, img, {}, None
def process_video(vid_path, dsdg_thresh):
cap = cv.VideoCapture(vid_path)
input_width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
input_height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
most_focused = filter_frames(cap)
inference_images = []
inference_bboxes = []
inference_depths = []
for frame in most_focused:
# Run inference on the current frame
img, bbox, depth_img = analyze_face(frame)
if bbox and (depth_img is not None):
inference_images.append(img)
inference_bboxes.append(bbox)
inference_depths.append(depth_img)
if not inference_images:
return vid_path, {'Not supported right now': 0}, -1, vid_path, 'Faces too small or not found', -1
scores = dsdg_model_inference(inference_images, inference_bboxes, inference_depths)
res_dsdg = np.percentile(scores, DSDG_PERCENTILE)
cls_dsdg = 'Real' if res_dsdg >= dsdg_thresh else 'Spoof'
for img, bbox, score in zip(inference_images, inference_bboxes, scores):
x, y, x2, y2 = bbox
w = x2 - x
h = y2 - y
frame_cls = 'Real' if score >= dsdg_thresh else 'Spoof'
color_dsdg = (0, 255, 0) if frame_cls == 'Real' else (0, 0, 255)
text = f'{cls_dsdg} {w}*{h}'
cv.rectangle(img, (x, y), (x2, y2), color_dsdg, 2)
cv.putText(img, text, (x, y2 + 30), cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
fourcc = cv.VideoWriter_fourcc(*'mp4v')
output_vid_path = 'output_dsdg.mp4'
out_dsdg = cv.VideoWriter(output_vid_path, fourcc, 6.0, (input_width, input_height))
for img in most_focused:
# Write the DSDG frame to the output video
out_dsdg.write(img)
out_dsdg.release()
text_dsdg = f'Label: {cls_dsdg}, average real confidence: {res_dsdg}\nFrames used: {len(scores)}\nConfidences: {scores}'
return vid_path, {'Not supported right now': 0}, -1, output_vid_path, text_dsdg, res_dsdg
def upload_to_s3(vid_path, app_version, *labels):
folder = 'demo'
bucket_name = 'livenessng'
if vid_path is None:
return 'Error. Take a photo first.'
elif labels[-2] == -2:
return 'Error. Run the detection first.'
elif labels[0] is None:
return 'Error. Select the true label first.'
elif labels[0] == 2:
labels[0] = -1
# Initialize S3 client
s3 = boto3.client('s3')
# Encode labels and app version in video file name
encoded_labels = '_'.join([str(int(label)) for label in labels])
random_string = str(uuid.uuid4()).split('-')[-1]
video_name = f"{folder}/{app_version}/{encoded_labels}_{random_string}.mp4"
# Upload video to S3
with open(vid_path, 'rb') as video_file:
res = s3.upload_fileobj(video_file, bucket_name, video_name)
# Return the S3 URL of the uploaded video
status = 'Successfully uploaded'
return status
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
input_vid = gr.Video(format='mp4', source='webcam')
dsdg_thresh = gr.Slider(value=DSDG_THRESHOLD, label='DSDG threshold', maximum=300, step=5)
btn_run = gr.Button(value="Run")
with gr.Column():
outputs=[
gr.Video(label='DeePixBiS', format='mp4'),
gr.Label(num_top_classes=2, label='DeePixBiS'),
gr.Number(visible=False, value=-2),
gr.Video(label='DSDG', format='mp4'),
gr.Textbox(label='DSDG'),
gr.Number(visible=False, value=-2)]
with gr.Column():
radio = gr.Radio(
["Spoof", "Real", "None"], label="True label", type='index')
flag = gr.Button(value="Flag")
status = gr.Textbox()
# example_block = gr.Examples(examples, [input_vid], outputs)
btn_run.click(process_video, [input_vid, dsdg_thresh], outputs)
app_version_block = gr.Textbox(value=app_version, visible=False)
flag.click(
upload_to_s3,
[input_vid, app_version_block, radio]+[outputs[2], outputs[5]],
[status], show_progress=True)
if __name__ == '__main__':
demo.queue(concurrency_count=2)
demo.launch(share=False)
|