File size: 3,492 Bytes
881388e 9b3ce7d 881388e c883602 881388e c883602 881388e c883602 7db2c21 881388e c883602 881388e 2db8672 881388e 818c8fa 881388e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
description = """
Minimizing L under the constraint FLOPs(N, D) = C.
The functions $N_{opt}(C)$, and $D_{opt}(C)$ describe the optimal allocation of a computational budget $C$.
We use the following notation:
β’ L β the cross entropy loss in nats. Typically it will be averaged over the tokens in a context, but in
some cases we report the loss for specific tokens within the context.
β’ N β the number of model parameters, excluding all vocabulary and positional embeddings
β’ D β the dataset size in tokens
β’ C β 6ND β an estimate of the total non-embedding training compute
$$E=1.69, A=406.4, B=410.7, \\alpha=0.34, \\beta=0.28$$
$$C\\approx6DN$$
$$L(N,D)=E+\\frac{A}{N^\\alpha}+\\frac{B}{D^\\beta}$$
$$N_{opt}(C),D_{opt}(C)={\\arg\\min}_{N,D\ s.t.\ FLOP/s(N,D)=C}\ L(N,D)$$
"""
article = """
References
- [Training Compute-Optimal Large Language Models](https://arxiv.org/pdf/2203.15556.pdf)
- [Scaling Laws for Neural Language Models](https://arxiv.org/pdf/2001.08361.pdf)
- [karpathy/nanoGPT](https://github.com/karpathy/nanoGPT/blob/master/scaling_laws.ipynb)
"""
def L(N, D):
"""
Approximates loss given N parameters and D dataset size (in tokens),
per Chinchilla paper.
"""
E = 1.69 # entropy of natural language, limit of infinite model on infinite data
A = 406.4
B = 410.7
alpha = 0.34
beta = 0.28
return A / (N ** alpha) + B / (D ** beta) + E
def plot_pens(tflpos_card, utilization, num_gps, training_days):
fig = plt.figure()
tflpos_card = float(tflpos_card)*(10**12)
utilization = float(utilization)
num_gps = int(num_gps)
training_days = float(training_days)
# target compute budget (usually know this because we know how many GPU for how long go brrr)
c = tflpos_card*num_gps*86400*training_days*utilization
# (I got this flop number from row 1 of Table A3)
# sweep model sizes from 10M to 100B
ns = 10 ** np.arange(7, 11, step=2**-4)
# using C = 6*N*D, solve for D that maintains the compute budget c
ds = c / (6 * ns)
# evaluate the loss in each case
losses = L(ns, ds)
# find the argmin
best = np.argmin(losses)
best_model_size = f"{ns[best]/1e6:.2f}M"
best_dataset_size = f"{ds[best]/1e9:.2f}B"
# plot the loss
# plt.figure(figsize=(3,3))
plt.plot(ns, losses)
plt.xscale('log')
# plot a vertical bar at the best model size
plt.axvline(ns[best], color='red')
plt.xlabel('model size')
plt.ylabel('loss')
fig.savefig("/tmp/tmp.jpg")
plt.close()
return "/tmp/tmp.jpg", c, round(losses[best], 3), best_model_size, best_dataset_size
if __name__ == "__main__":
iface = gr.Interface(
fn=plot_pens,
inputs=[
gr.Textbox(label="TFLOP/s pre Card",value="40"),
gr.Slider(label="GPU Utilization", minimum=0, maximum=1, step=0.01,value=0.25),
gr.Textbox(label="Number of cards"),
gr.Textbox(label="Training Days")
],
outputs=[
gr.Image(label="Estimated Loss"),
gr.Label(label="Total Compute Budget"),
gr.Label(label="Estimated Final Loss"),
gr.Label(label="Optimal Model Size"),
gr.Label(label="Optimal Dataset Size (Tokens)")
],
title="Compute-Optimal Model Estimator",
description=description,
article=article,
live=False
).launch()
|