File size: 2,502 Bytes
9d942e2 afa7629 9d942e2 0dd2821 9d942e2 473663e afa7629 9d942e2 0dd2821 9d942e2 afa7629 9d942e2 452c489 9d942e2 452c489 9d942e2 c48fc29 9d942e2 672fa5c 473663e 672fa5c 9d942e2 2bd045c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
from flask import Flask, request, jsonify ,render_template , redirect
from pydantic import BaseModel
import pickle
import json
import pandas as pd
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.inception_v3 import preprocess_input
import numpy as np
import os
import gdown
import lightgbm as lgb
from PIL import Image
from flask_cors import CORS, cross_origin
app = Flask(__name__)
id = "1dPrnyH7y9ojSHaOOOTkbGkCnhwYvMxab"
output = "disease_new.h5"
gdown.download(id=id, output=output, quiet=False)
CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
crop_disease_ml=load_model('disease_new.h5')
@app.route("/upload-image", methods=["POST"])
@cross_origin()
def upload_image():
# if request.method == "POST":
if request.files:
imag = request.files["image"]
try:
contents = imag.read()
with open(imag.filename, 'wb') as f:
f.write(contents)
except Exception:
return {"message": "There was an error uploading the file"}
finally:
imag.close()
print(imag)
classes = ['Pepper__bell___Bacterial_spot', 'Pepper__bell___healthy', 'Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy', 'Tomato_Bacterial_spot', 'Tomato_Early_blight', 'Tomato_Late_blight', 'Tomato_Leaf_Mold', 'Tomato_Septoria_leaf_spot', 'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato__Target_Spot', 'Tomato__Tomato_YellowLeaf__Curl_Virus', 'Tomato__Tomato_mosaic_virus', 'Tomato_healthy']
img=image.load_img(str(imag.filename),target_size=(224,224))
x=image.img_to_array(img)
x=x/255
img_data=np.expand_dims(x,axis=0)
prediction = crop_disease_ml.predict(img_data)
predictions = list(prediction[0])
max_num = max(predictions)
index = predictions.index(max_num)
print(classes[index])
os.remove(str(imag.filename))
response = jsonify(output=classes[index])
# response.headers.add('Access-Control-Allow-Origin', '*')
# response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
# response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
return response
if __name__ =="__main__":
app.run(debug=False,host="0.0.0.0",port=5000) |