File size: 2,502 Bytes
9d942e2
 
 
 
 
 
 
 
 
 
 
 
 
afa7629
 
9d942e2
 
 
0dd2821
 
9d942e2
 
473663e
afa7629
9d942e2
0dd2821
9d942e2
 
afa7629
9d942e2
 
 
 
 
452c489
9d942e2
 
 
 
 
452c489
9d942e2
c48fc29
9d942e2
 
 
 
 
 
 
 
 
 
672fa5c
473663e
 
 
672fa5c
9d942e2
 
 
2bd045c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from flask import Flask, request, jsonify ,render_template , redirect
from pydantic import BaseModel
import pickle
import json
import pandas as pd
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.inception_v3 import preprocess_input
import numpy as np
import os
import gdown
import lightgbm as lgb
from PIL import Image
from flask_cors import CORS, cross_origin


app = Flask(__name__)

id = "1dPrnyH7y9ojSHaOOOTkbGkCnhwYvMxab"
output = "disease_new.h5"
gdown.download(id=id, output=output, quiet=False)
   
CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'

crop_disease_ml=load_model('disease_new.h5')

@app.route("/upload-image", methods=["POST"])
@cross_origin()
def upload_image():
    # if request.method == "POST":
        if request.files:
            imag = request.files["image"]
            try:
                contents = imag.read()
                with open(imag.filename, 'wb') as f:
                    f.write(contents)
            except Exception:
                return {"message": "There was an error uploading the file"}
            finally:
                imag.close()
            print(imag)
            classes = ['Pepper__bell___Bacterial_spot', 'Pepper__bell___healthy', 'Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy', 'Tomato_Bacterial_spot', 'Tomato_Early_blight', 'Tomato_Late_blight', 'Tomato_Leaf_Mold', 'Tomato_Septoria_leaf_spot', 'Tomato_Spider_mites_Two_spotted_spider_mite', 'Tomato__Target_Spot', 'Tomato__Tomato_YellowLeaf__Curl_Virus', 'Tomato__Tomato_mosaic_virus', 'Tomato_healthy']
            img=image.load_img(str(imag.filename),target_size=(224,224))
            x=image.img_to_array(img)
            x=x/255
            img_data=np.expand_dims(x,axis=0)
            prediction = crop_disease_ml.predict(img_data)
            predictions = list(prediction[0])
            max_num = max(predictions)
            index = predictions.index(max_num)
            print(classes[index])
            os.remove(str(imag.filename))
            response = jsonify(output=classes[index])
            # response.headers.add('Access-Control-Allow-Origin', '*')
            # response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
            # response.headers.add('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS')
            return response


if __name__ =="__main__":
    app.run(debug=False,host="0.0.0.0",port=5000)