Spaces:
Sleeping
Sleeping
File size: 4,300 Bytes
64c5f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# Import packages:
import numpy as np
import matplotlib.pyplot as plt
import re
# tensorflow imports:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import losses
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
from tensorflow.keras.optimizers import RMSprop
# # keras imports:
from keras.models import Model
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding, RepeatVector, TimeDistributed
from keras.preprocessing.text import Tokenizer
from keras_preprocessing import sequence
from tensorflow.keras.utils import to_categorical
from keras.callbacks import EarlyStopping
from keras.models import Sequential
from keras import layers
from keras.backend import clear_session
import pickle
import gradio as gr
import yake
import spacy
from spacy import displacy
import streamlit as st
import spacy_streamlit
nlp = spacy.load('en_core_web_sm')
kw_extractor = yake.KeywordExtractor()
custom_kw_extractor = yake.KeywordExtractor(lan="en", n=2, dedupLim=0.2, top=10, features=None)
max_words = 2000
max_len = 111
# load the model from disk
filename = 'resil_lstm_model.sav'
lmodel = pickle.load(open(filename, 'rb'))
# load the model from disk
filename = 'tokenizer.pickle'
tok = pickle.load(open(filename, 'rb'))
def process_final_text(text):
X_test = str(text).lower()
l = []
l.append(X_test)
test_sequences = tok.texts_to_sequences(l)
test_sequences_matrix = sequence.pad_sequences(test_sequences,maxlen=max_len)
lstm_prob = lmodel.predict(test_sequences_matrix.tolist()).flatten()
lstm_pred = np.where(lstm_prob>=0.5,1,0)
# Get Keywords:
keywords = custom_kw_extractor.extract_keywords(X_test)
letter = []
score = []
for i in keywords:
if i[1]>0.4:
a = "+++"
elif (i[1]<=0.4) and (i[1]>0.1):
a = "++"
elif (i[1]<=0.1) and (i[1]>0.01):
a = "+"
else:
a = "NA"
letter.append(i[0])
score.append(a)
keywords = [(letter[i], score[i]) for i in range(0, len(letter))]
# Get NER:
# NER:
doc = nlp(text)
sp_html = displacy.render(doc, style="ent", page=True, jupyter=False)
NER = (
""
+ sp_html
+ ""
)
return {"Resilience": float(lstm_prob[0]), "Non-Resilience": 1-float(lstm_prob[0])},keywords,NER
def main(prob1):
text = str(prob1)
obj = process_final_text(text)
return obj[0],obj[1],obj[2]
title = "Welcome to **ResText** πͺ"
description1 = """
Just add your text and hit Create & Analyze β¨
"""
description2 = """
Although encouraged, you don't have to fill all the boxes. Just try the ones that matter to you. After getting your first score, modify your answers and hit Create & Analyze again π€
"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown("""![marketing](file/marketing.jpg)""")
gr.Markdown(description1)
gr.Markdown("""---""")
gr.Markdown(description2)
gr.Markdown("""---""")
prob1 = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...")
submit_btn = gr.Button("Create & Analyze")
#text = gr.Textbox(label="Text:",lines=2, placeholder="Please enter text here ...")
#submit_btn2 = gr.Button("Analyze")
with gr.Column(visible=True) as output_col:
label = gr.Label(label = "Predicted Label")
impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style(
color_map={"+++": "royalblue","++": "cornflowerblue",
"+": "lightsteelblue", "NA":"white"})
NER = gr.HTML(label = 'NER:')
submit_btn.click(
main,
[prob1],
[label,impplot,NER], api_name="ResTalk"
)
gr.Markdown("### Click on any of the examples below to see how it works:")
gr.Examples([["It is difficult to write persuasive product descriptions."], ["Talking to your friends about their problems with drugs and alcohol might not be easy."], ["When experiencing depression, I couldn't get out of bed or focus.", ["Up to 6 million homeless animals enter shelters nationwide every year."]], [prob1], [label,impplot,NER], main, cache_examples=True)
demo.launch() |