File size: 14,115 Bytes
a65550c
 
165321e
e2029e4
 
a65550c
3eda1dd
a65550c
4687e09
a65550c
e2029e4
 
 
 
a65550c
 
 
01179b1
 
 
 
 
 
a65550c
 
 
01179b1
 
 
 
 
a65550c
28de084
df3ebe1
a65550c
 
 
e2029e4
2dcaff1
71e6b18
3eda1dd
 
 
1ed5fd3
 
 
 
 
 
 
 
 
71e6b18
1ed5fd3
 
 
01179b1
3eda1dd
 
 
 
 
a65550c
01179b1
 
 
a65550c
 
e2029e4
 
 
 
 
 
a65550c
 
 
 
 
 
 
01179b1
a65550c
df3ebe1
 
a65550c
 
 
 
01179b1
 
 
 
 
a65550c
 
e2029e4
01179b1
a65550c
 
 
e2029e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65550c
 
01179b1
 
e2029e4
a65550c
3eda1dd
e2029e4
3eda1dd
e2029e4
01179b1
 
a65550c
 
 
 
 
 
 
 
e2029e4
a65550c
 
 
 
 
 
e2029e4
a65550c
 
 
 
e2029e4
 
a65550c
e2029e4
a65550c
 
 
 
e2029e4
a65550c
 
01179b1
a65550c
 
01179b1
 
 
 
 
a65550c
 
 
 
 
 
4687e09
a65550c
e2029e4
 
 
01179b1
 
a65550c
e2029e4
01179b1
e2029e4
a65550c
 
3eda1dd
 
01179b1
3eda1dd
 
a65550c
01179b1
 
e2029e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eda1dd
d091d7f
3eda1dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a65550c
 
01179b1
e2029e4
 
a65550c
 
 
 
ff17e6b
 
738f600
ff17e6b
 
 
 
e2029e4
01179b1
 
 
 
 
a65550c
01179b1
 
 
e2029e4
 
 
 
 
 
 
 
 
 
 
 
 
01179b1
e2029e4
 
 
ff17e6b
 
 
 
 
 
 
 
e2029e4
ff17e6b
 
 
e2029e4
3eda1dd
e2029e4
3eda1dd
 
e2029e4
3eda1dd
 
e2029e4
 
3eda1dd
 
 
 
01179b1
e2029e4
 
01179b1
e2029e4
df3ebe1
 
01179b1
 
3eda1dd
01179b1
 
 
 
 
 
 
 
 
 
165321e
01179b1
 
5720255
01179b1
 
e2029e4
01179b1
e2029e4
 
 
23dffc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bf709c
 
 
 
 
 
 
 
e2029e4
 
 
 
01179b1
 
e2029e4
 
 
 
 
 
 
 
 
 
 
 
 
01179b1
4d02823
01179b1
e2029e4
 
 
 
 
01179b1
a65550c
e2029e4
 
 
 
 
 
 
 
 
 
a65550c
e2029e4
71e6b18
a65550c
 
01179b1
a65550c
 
 
01179b1
df3ebe1
01179b1
a65550c
 
 
 
3eda1dd
 
a65550c
 
 
 
01179b1
a65550c
05d4795
a65550c
01179b1
4687e09
 
 
a65550c
df3ebe1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
import gradio as gr
import os
from threading import Thread
from queue import Queue
import time
import cv2
import datetime
import torch
import spaces
import numpy as np
import json
import hashlib
import PIL
from typing import Iterator

from llava import conversation as conversation_lib
from llava.constants import DEFAULT_IMAGE_TOKEN
from llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
    tokenizer_image_token,
    get_model_name_from_path,
    KeywordsStoppingCriteria,
)

from serve_constants import html_header

import requests
from PIL import Image
from io import BytesIO
from transformers import TextIteratorStreamer
import subprocess

external_log_dir = "./logs"
LOGDIR = external_log_dir

def install_gradio_4_35_0():
    current_version = gr.__version__
    if current_version != "4.35.0":
        print(f"Current Gradio version: {current_version}")
        print("Installing Gradio 4.35.0...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", "gradio==4.35.0", "--force-reinstall"])
        print("Gradio 4.35.0 installed successfully.")
    else:
        print("Gradio 4.35.0 is already installed.")

install_gradio_4_35_0()

print(f"Gradio version: {gr.__version__}")

def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-user_conv.json")
    return name

class InferenceDemo(object):
    def __init__(
        self, args, model_path, tokenizer, model, image_processor, context_len
    ) -> None:
        disable_torch_init()

        self.tokenizer = tokenizer
        self.model = model
        self.image_processor = image_processor
        self.context_len = context_len
        
        model_name = get_model_name_from_path(model_path)

        if "llama-2" in model_name.lower():
            conv_mode = "llava_llama_2"
        elif "v1" in model_name.lower():
            conv_mode = "llava_v1"
        elif "mpt" in model_name.lower():
            conv_mode = "mpt"
        elif "qwen" in model_name.lower():
            conv_mode = "qwen_1_5"
        elif "pangea" in model_name.lower():
            conv_mode = "qwen_1_5"
        else:
            conv_mode = "llava_v0"

        if args.conv_mode is not None and conv_mode != args.conv_mode:
            print(
                "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
                    conv_mode, args.conv_mode, args.conv_mode
                )
            )
        else:
            args.conv_mode = conv_mode
        
        self.conv_mode = conv_mode
        self.conversation = conv_templates[args.conv_mode].copy()
        self.num_frames = args.num_frames

def process_stream(streamer: TextIteratorStreamer, history: list, q: Queue):
    """Process the output stream and put partial text into a queue"""
    try:
        current_message = ""
        for new_text in streamer:
            current_message += new_text
            history[-1][1] = current_message
            q.put(history.copy())
            time.sleep(0.02)  # Add a small delay to prevent overloading
    except Exception as e:
        print(f"Error in process_stream: {e}")
    finally:
        q.put(None)  # Signal that we're done

def stream_output(history: list, q: Queue) -> Iterator[list]:
    """Yield updated history as it comes through the queue"""
    while True:
        val = q.get()
        if val is None:
            break
        yield val
        q.task_done()

def is_valid_video_filename(name):
    video_extensions = ["avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg"]
    ext = name.split(".")[-1].lower()
    return ext in video_extensions

def is_valid_image_filename(name):
    image_extensions = ["jpg", "jpeg", "png", "bmp", "gif", "tiff", "webp", "heic", "heif", "jfif", "svg", "eps", "raw"]
    ext = name.split(".")[-1].lower()
    return ext in image_extensions

def sample_frames(video_file, num_frames):
    video = cv2.VideoCapture(video_file)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    interval = total_frames // num_frames
    frames = []
    for i in range(total_frames):
        ret, frame = video.read()
        if not ret:
            continue
        pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        if i % interval == 0:
            frames.append(pil_img)
    video.release()
    return frames

def load_image(image_file):
    if image_file.startswith(("http://", "https://")):
        response = requests.get(image_file)
        if response.status_code == 200:
            image = Image.open(BytesIO(response.content)).convert("RGB")
        else:
            print("Failed to load the image")
            return None
    else:
        print("Load image from local file:", image_file)
        image = Image.open(image_file).convert("RGB")
    return image

def clear_history(history):
    global our_chatbot
    our_chatbot.conversation = conv_templates[our_chatbot.conv_mode].copy()
    return None

def add_message(history, message):
    global our_chatbot
    if len(history) == 0:
        our_chatbot = InferenceDemo(
            args, model_path, tokenizer, model, image_processor, context_len
        )

    for x in message["files"]:
        history.append(((x,), None))
    if message["text"] is not None:
        history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)

@spaces.GPU
def bot(history):
    global start_tstamp, finish_tstamp
    
    start_tstamp = time.time()
    text = history[-1][0]
    images_this_term = []
    num_new_images = 0
    
    for i, message in enumerate(history[:-1]):
        if isinstance(message[0], tuple):
            images_this_term.append(message[0][0])
            if is_valid_video_filename(message[0][0]):
                raise ValueError("Video is not supported")
            elif is_valid_image_filename(message[0][0]):
                num_new_images += 1
            else:
                raise ValueError("Invalid image file")
        else:
            num_new_images = 0

    assert len(images_this_term) > 0, "Must have an image"
    
    image_list = []
    for f in images_this_term:
        if is_valid_video_filename(f):
            image_list += sample_frames(f, our_chatbot.num_frames)
        elif is_valid_image_filename(f):
            image_list.append(load_image(f))
        else:
            raise ValueError("Invalid image file")
    
    image_tensor = [
        our_chatbot.image_processor.preprocess(f, return_tensors="pt")["pixel_values"][0]
        .half()
        .to(our_chatbot.model.device)
        for f in image_list
    ]
    
    # Process image hashes
    all_image_hash = []
    for image_path in images_this_term:
        with open(image_path, "rb") as image_file:
            image_data = image_file.read()
            image_hash = hashlib.md5(image_data).hexdigest()
            all_image_hash.append(image_hash)
            image = PIL.Image.open(image_path).convert("RGB")
            t = datetime.datetime.now()
            filename = os.path.join(
                LOGDIR,
                "serve_images",
                f"{t.year}-{t.month:02d}-{t.day:02d}",
                f"{image_hash}.jpg",
            )
            if not os.path.isfile(filename):
                os.makedirs(os.path.dirname(filename), exist_ok=True)
                image.save(filename)

    image_tensor = torch.stack(image_tensor)
    image_token = DEFAULT_IMAGE_TOKEN * num_new_images
    inp = image_token + "\n" + text
    
    our_chatbot.conversation.append_message(our_chatbot.conversation.roles[0], inp)
    our_chatbot.conversation.append_message(our_chatbot.conversation.roles[1], None)
    prompt = our_chatbot.conversation.get_prompt()

    input_ids = (
        tokenizer_image_token(
            prompt, our_chatbot.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
        )
        .unsqueeze(0)
        .to(our_chatbot.model.device)
    )

    stop_str = (
        our_chatbot.conversation.sep
        if our_chatbot.conversation.sep_style != SeparatorStyle.TWO
        else our_chatbot.conversation.sep2
    )
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(
        keywords, our_chatbot.tokenizer, input_ids
    )

    # Set up streaming
    q = Queue()
    streamer = TextIteratorStreamer(
        our_chatbot.tokenizer,
        skip_prompt=True,
        skip_special_tokens=True
    )

    # Start generation in a separate thread
    thread = Thread(
        target=process_stream,
        args=(streamer, history, q)
    )
    thread.start()

    # Start the generation
    with torch.inference_mode():
        output_ids = our_chatbot.model.generate(
            input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=1024,
            streamer=streamer,
            use_cache=True,
            stopping_criteria=[stopping_criteria],
        )

    finish_tstamp = time.time()
    
    # Log conversation
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": "Pangea-7b",
            "start": round(start_tstamp, 4),
            "finish": round(finish_tstamp, 4),
            "state": history,
            "images": all_image_hash,
        }
        fout.write(json.dumps(data) + "\n")

    # Return a generator that will yield updated history
    return stream_output(history, q)

with gr.Blocks(css=".message-wrap.svelte-1lcyrx4>div.svelte-1lcyrx4 img {min-width: 40px}") as demo:
    gr.HTML(html_header)
    
    with gr.Column():
        with gr.Row():
            chatbot = gr.Chatbot([], elem_id="Pangea", bubble_full_width=False, height=750)

        with gr.Row():
            upvote_btn = gr.Button(value="👍  Upvote", interactive=True)
            downvote_btn = gr.Button(value="👎  Downvote", interactive=True)
            flag_btn = gr.Button(value="⚠️  Flag", interactive=True)
            regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=True)
            clear_btn = gr.Button(value="🗑️  Clear history", interactive=True)

        chat_input = gr.MultimodalTextbox(
            interactive=True,
            file_types=["image"],
            placeholder="Enter message or upload file...",
            show_label=False,
            submit_btn="🚀"
        )

        cur_dir = os.path.dirname(os.path.abspath(__file__))
        gr.Examples(
            examples_per_page=20,
            examples=[
                [
                        {
                            "files": [
                                f"{cur_dir}/examples/user_example_07.jpg",
                            ],
                            "text": "那要我问问你,你这个是什么🐱?",
                        },
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/user_example_05.jpg",
                            ],
                            "text": "この猫の目の大きさは、どのような理由で他の猫と比べて特に大きく見えますか?",
                        },
                    ],
                    [
                        {
                            "files": [
                                f"{cur_dir}/examples/172197131626056_P7966202.png",
                            ],
                            "text": "Why this image funny?",
                        },
                    ],
            ],
            inputs=[chat_input],
            label="Image",
        )

    chat_msg = chat_input.submit(
        add_message, 
        [chatbot, chat_input], 
        [chatbot, chat_input],
        queue=False
    ).then(
        bot,
        chatbot,
        chatbot,
        api_name="bot_response"
    ).then(
        lambda: gr.MultimodalTextbox(interactive=True), 
        None, 
        [chat_input]
    )

    clear_btn.click(
        fn=clear_history, 
        inputs=[chatbot], 
        outputs=[chatbot], 
        api_name="clear_all",
        queue=False
    )

    regenerate_btn.click(
        fn=lambda history: history[:-1],
        inputs=[chatbot],
        outputs=[chatbot],
        queue=False
    ).then(
        bot,
        chatbot,
        chatbot
    )

demo.queue(concurrency_count=5)
    
if __name__ == "__main__":
    import argparse

    argparser = argparse.ArgumentParser()
    argparser.add_argument("--server_name", default="0.0.0.0", type=str)
    argparser.add_argument("--port", default="6123", type=str)
    argparser.add_argument(
        "--model_path", default="neulab/Pangea-7B", type=str
    )
    # argparser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    argparser.add_argument("--model-base", type=str, default=None)
    argparser.add_argument("--num-gpus", type=int, default=1)
    argparser.add_argument("--conv-mode", type=str, default=None)
    argparser.add_argument("--temperature", type=float, default=0.7)
    argparser.add_argument("--max-new-tokens", type=int, default=4096)
    argparser.add_argument("--num_frames", type=int, default=16)
    argparser.add_argument("--load-8bit", action="store_true")
    argparser.add_argument("--load-4bit", action="store_true")
    argparser.add_argument("--debug", action="store_true")

    args = argparser.parse_args()

    model_path = args.model_path
    filt_invalid = "cut"
    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit)
    model=model.to(torch.device('cuda'))
    our_chatbot = None
    demo.launch()