Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,158 Bytes
e37bd67 5b49f28 8c02e1d 938e515 6b06100 938e515 1a13129 6b4235a 938e515 6b06100 91c7a78 6b06100 938e515 6b06100 938e515 91c7a78 938e515 1dddd5f 3242b28 1dddd5f 3242b28 5b49f28 3a4de36 4191c16 72b00c6 3242b28 72b00c6 3242b28 72b00c6 3242b28 938e515 3242b28 2070278 08a2700 8c02e1d 938e515 91c7a78 6cbe0ae 5ca0873 d3da15b 3242b28 72b00c6 8c02e1d 3242b28 938e515 45cc2fd ab2e314 3242b28 ab2e314 72b00c6 ab2e314 72b00c6 ab2e314 72b00c6 ab2e314 45cc2fd ab2e314 45cc2fd ab2e314 0c774a3 5ca0873 0c774a3 5ca0873 ab2e314 938e515 4191c16 f639b5d 4191c16 3a4de36 6e68a36 5b49f28 938e515 3242b28 b7d9c38 595105e 938e515 6e68a36 938e515 3242b28 938e515 45cc2fd 938e515 595105e 938e515 45cc2fd 938e515 ab2e314 f65f11f ab2e314 f65f11f cbe97f0 f65f11f ab2e314 938e515 6cbe0ae 938e515 6cbe0ae 938e515 164e9d5 c58380c 9da72e5 8a36c33 938e515 31ccc70 6cbe0ae 938e515 ab2e314 938e515 c123434 938e515 ab2e314 938e515 f65f11f 595105e 2ea463e f65f11f 938e515 2ea463e f65f11f 595105e 938e515 6de0e51 f65f11f 938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import spaces
import logging
import math
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from src.enhanced_garment_net import EnhancedGarmentNetWithTimestep
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler,AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
from src.background_processor import BackgroundProcessor
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i,j] == True :
mask[i,j] = 1
mask = (mask*255).astype(np.uint8)
output_mask = Image.fromarray(mask)
return output_mask
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
unet = UNet2DConditionModel.from_pretrained(
base_path,
subfolder="unet",
torch_dtype=torch.float16,
)
unet.requires_grad_(False)
# This is suggestion from Claude for enhanced garment net
#enhancedGarmentNet = EnhancedGarmentNetWithTimestep()
#enhancedGarmentNet.to(dtype=torch.float16)
tokenizer_one = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer",
revision=None,
use_fast=False,
)
tokenizer_two = AutoTokenizer.from_pretrained(
base_path,
subfolder="tokenizer_2",
revision=None,
use_fast=False,
)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(
base_path,
subfolder="text_encoder",
torch_dtype=torch.float16,
)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
base_path,
subfolder="text_encoder_2",
torch_dtype=torch.float16,
)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
base_path,
subfolder="image_encoder",
torch_dtype=torch.float16,
)
vae = AutoencoderKL.from_pretrained(base_path,
subfolder="vae",
torch_dtype=torch.float16,
)
# "stabilityai/stable-diffusion-xl-base-1.0",
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
base_path,
subfolder="unet_encoder",
torch_dtype=torch.float16,
)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
UNet_Encoder.requires_grad_(False)
image_encoder.requires_grad_(False)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor= CLIPImageProcessor(),
text_encoder = text_encoder_one,
text_encoder_2 = text_encoder_two,
tokenizer = tokenizer_one,
tokenizer_2 = tokenizer_two,
scheduler = noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
# pipe.garment_net = enhancedGarmentNet
# Standard size of shein images
#WIDTH = int(4160/5)
#HEIGHT = int(6240/5)
# Standard size on which model is trained
WIDTH = int(768)
HEIGHT = int(1024)
POSE_WIDTH = int(WIDTH/2) # int(WIDTH/2)
POSE_HEIGHT = int(HEIGHT/2) #int(HEIGHT/2)
ARM_WIDTH = "dc" # "hd" # hd -> full sleeve, dc for half sleeve
CATEGORY = "upper_body" # "lower_body"
def is_cropping_required(width, height):
# If aspect ratio is 1.33, which is same as standard 3x4 ( 768x1024 ), then no need to crop, else crop
aspect_ratio = round(height/width, 2)
if aspect_ratio == 1.33:
return False
return True
@spaces.GPU
def start_tryon(human_img_dict,garm_img,garment_des, background_img, is_checked,is_checked_crop,denoise_steps,seed):
logging.info("Starting try on")
print(f"Input: {human_img_dict}")
#device = "cuda"
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
# pipe.garment_net.to(device)
# human_img_orig = human_img_dict["background"].convert("RGB") # ImageEditor
human_img_orig = human_img_dict.convert("RGB") # Image
"""
# Derive HEIGHT & WIDTH such that width is not more than 1000. This will cater to both Shein images (4160x6240) of 2:3 AR and model standard images ( 768x1024 ) of 3:4 AR
WIDTH, HEIGHT = human_img_orig.size
division_factor = math.ceil(WIDTH/1000)
WIDTH = int(WIDTH/division_factor)
HEIGHT = int(HEIGHT/division_factor)
POSE_WIDTH = int(WIDTH/2)
POSE_HEIGHT = int(HEIGHT/2)
"""
# is_checked_crop as True if original AR is not same as 2x3 as expected by model
w, h = human_img_orig.size
is_checked_crop = is_cropping_required(w, h)
garm_img= garm_img.convert("RGB").resize((WIDTH,HEIGHT))
if is_checked_crop:
# This will crop the image to make it Aspect Ratio of 3 x 4. And then at the end revert it back to original dimentions
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) / 2
right = (width + target_width) / 2
# for Landmark, model sizes are 594x879, so we need to reduce the height. In some case the garment on the model is
# also getting removed when reducing size from bottom. So we will only reduce height from top for now
top = (height - target_height) #top = (height - target_height) / 2
bottom = height #bottom = (height + target_height) / 2
cropped_img = human_img_orig.crop((left, top, right, bottom))
crop_size = cropped_img.size
human_img = cropped_img.resize((WIDTH, HEIGHT))
else:
human_img = human_img_orig.resize((WIDTH, HEIGHT))
# Commenting out naize harmonization for now. We will have to integrate with Deep Learning based Harmonization methods
# Do color transfer from background image for better image harmonization
#if background_img:
# human_img = BackgroundProcessor.intensity_transfer(human_img, background_img)
if is_checked:
# internally openpose_model is resizing human_img to resolution 384 if not passed as input
keypoints = openpose_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
model_parse, _ = parsing_model(human_img.resize((POSE_WIDTH, POSE_HEIGHT)))
# internally get mask location function is resizing model_parse to 384x512 if width & height not passed
mask, mask_gray = get_mask_location(ARM_WIDTH, CATEGORY, model_parse, keypoints)
mask = mask.resize((WIDTH, HEIGHT))
logging.info("Mask location on model identified")
else:
mask = pil_to_binary_mask(human_img_dict['layers'][0].convert("RGB").resize((WIDTH, HEIGHT)))
# mask = transforms.ToTensor()(mask)
# mask = mask.unsqueeze(0)
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((POSE_WIDTH,POSE_HEIGHT)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', device))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((WIDTH,HEIGHT))
with torch.no_grad():
# Extract the images
with torch.cuda.amp.autocast():
with torch.no_grad():
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt = "a photo of " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not isinstance(prompt, List):
prompt = [prompt] * 1
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * 1
with torch.inference_mode():
(
prompt_embeds_c,
_,
_,
_,
) = pipe.encode_prompt(
prompt,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
negative_prompt=negative_prompt,
)
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
images = pipe(
prompt_embeds=prompt_embeds.to(device,torch.float16),
negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
num_inference_steps=denoise_steps,
generator=generator,
strength = 1.0,
pose_img = pose_img.to(device,torch.float16),
text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
cloth = garm_tensor.to(device,torch.float16),
mask_image=mask,
image=human_img,
height=HEIGHT,
width=WIDTH,
ip_adapter_image = garm_img.resize((WIDTH,HEIGHT)),
guidance_scale=2.0,
)[0]
if is_checked_crop:
out_img = images[0].resize(crop_size)
human_img_orig.paste(out_img, (int(left), int(top)))
final_image = human_img_orig
# return human_img_orig, mask_gray
else:
final_image = images[0]
# return images[0], mask_gray
# apply background to final image
if background_img:
logging.info("Adding background")
final_image = BackgroundProcessor.replace_background_with_removebg(final_image, background_img)
return final_image, mask_gray
# return images[0], mask_gray
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
human_ex_list = []
human_ex_list = human_list_path # Image
""" if using ImageEditor instead of Image while taking input, use this - ImageEditor
for ex_human in human_list_path:
ex_dict= {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
"""
##default human
# api_open=True will allow this API to be hit using curl
image_blocks = gr.Blocks().queue(api_open=True)
with image_blocks as demo:
gr.Markdown("## Virtual Try-On πππ")
gr.Markdown("Upload an image of a person and an image of a garment β¨.")
with gr.Row():
with gr.Column():
# changing from ImageEditor to Image to allow easy passing of data through API
# instead of passing {"dictionary": <>} ( which is failing ), we can directly pass the image
#imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
imgs = gr.Image(sources='upload', type='pil',label='Human. Mask with pen or use auto-masking')
with gr.Row():
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
with gr.Row():
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_ex_list
)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
with gr.Row(elem_id="prompt-container"):
with gr.Row():
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path)
with gr.Column():
background_img = gr.Image(label="Background", sources='upload', type="pil")
with gr.Column():
with gr.Row():
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
with gr.Row():
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
"""
with gr.Column():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
with gr.Column():
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
"""
with gr.Column():
try_button = gr.Button(value="Try-on")
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row():
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, background_img, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
image_blocks.launch()
|