hogRAGger / hogragger.py
parthmodi22's picture
hogragger
42b54f3
raw
history blame
10.7 kB
import json
import re
import nltk
from nltk.tokenize import sent_tokenize
import torch
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
from rank_bm25 import BM25Okapi # BM25 for hybrid search
import logging
nltk.download('punkt', quiet=True)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class Hogragger:
def __init__(self, corpus_path, model_name='sentence-transformers/all-MiniLM-L12-v2', qa_model='deepset/roberta-large-squad2', classifier_model='deepset/roberta-large-squad2'):
self.corpus = self.load_corpus(corpus_path)
self.cleaned_passages = self.preprocess_corpus()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f"Using device: {self.device}")
# Initialize embedding model and build FAISS index
self.model = SentenceTransformer(model_name).to(self.device)
self.index = self.build_faiss_index()
# Initialize BM25 for lexical matching
self.bm25 = self.build_bm25_index()
# Initialize classifier for question type prediction
self.tokenizer = AutoTokenizer.from_pretrained(classifier_model)
self.classifier = AutoModelForSequenceClassification.from_pretrained(classifier_model).to(self.device)
# QA Model
self.qa_model = pipeline('question-answering', model=qa_model, device=0 if self.device == 'cuda' else -1)
def load_corpus(self, path):
logging.info(f"Loading corpus from {path}")
with open(path, "r") as f:
corpus = json.load(f)
logging.info(f"Loaded {len(corpus)} documents")
return corpus
# def preprocess_corpus(self):
# cleaned_passages = []
# for article in self.corpus:
# body = article.get('body', '')
# clean_body = re.sub(r'<.*?>', '', body) # Clean HTML tags
# clean_body = re.sub(r'\s+', ' ', clean_body).strip() # Clean extra spaces
# sentences = sent_tokenize(clean_body)
# chunk = ""
# for sentence in sentences:
# if len(chunk.split()) + len(sentence.split()) <= 300:
# chunk += " " + sentence
# else:
# cleaned_passages.append(self.create_passage(article, chunk))
# chunk = sentence
# if chunk:
# cleaned_passages.append(self.create_passage(article, chunk))
# logging.info(f"Created {len(cleaned_passages)} passages")
# return cleaned_passages
def preprocess_corpus(self):
cleaned_passages = []
for article in self.corpus:
body = article.get('body', '')
clean_body = re.sub(r'<.*?>', '', body) # Clean HTML tags
clean_body = re.sub(r'\s+', ' ', clean_body).strip() # Clean extra spaces
# Simply take the full cleaned text as a passage without chunking or sentence splitting
cleaned_passages.append(self.create_passage(article, clean_body))
logging.info(f"Created {len(cleaned_passages)} passages")
return cleaned_passages
def create_passage(self, article, chunk):
"""Creates a passage dictionary from an article and chunk of text."""
return {
"title": article['title'],
"author": article.get('author', 'Unknown'),
"published_at": article['published_at'],
"category": article['category'],
"url": article['url'],
"source": article['source'],
"passage": chunk.strip()
}
def build_faiss_index(self):
logging.info("Building FAISS index...")
embeddings = self.model.encode([p['passage'] for p in self.cleaned_passages], convert_to_tensor=True, device=self.device)
embeddings = np.array(embeddings.cpu()).astype('float32')
logging.info(f"Shape of embeddings: {embeddings.shape}")
index = faiss.IndexFlatL2(embeddings.shape[1]) # Initialize FAISS index
if self.device == 'cuda':
try:
res = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)
gpu_index.add(embeddings)
logging.info("Successfully created GPU index")
return gpu_index
except RuntimeError as e:
logging.error(f"GPU index creation failed: {e}")
logging.info("Falling back to CPU index")
index.add(embeddings) # Add embeddings to CPU index
logging.info("Successfully created CPU index")
return index
def build_bm25_index(self):
logging.info("Building BM25 index...")
tokenized_corpus = [p['passage'].split() for p in self.cleaned_passages]
bm25 = BM25Okapi(tokenized_corpus)
logging.info("Successfully built BM25 index")
return bm25
def predict_question_type(self, query):
inputs = self.tokenizer(query, return_tensors='pt').to(self.device)
outputs = self.classifier(**inputs)
prediction = torch.argmax(outputs.logits, dim=1).item()
labels = {0: 'inference_query', 1: 'comparison_query', 2: 'null_query', 3: 'temporal_query', 4: 'fact_query'}
return labels.get(prediction, 'unknown_query')
def retrieve_passages(self, query, k=100, threshold=0.7):
try:
# FAISS retrieval
query_embedding = self.model.encode([query], convert_to_tensor=True, device=self.device)
D, I = self.index.search(np.array(query_embedding.cpu()), k)
# BM25 retrieval
tokenized_query = query.split()
bm25_scores = self.bm25.get_scores(tokenized_query)
# Combine FAISS and BM25 results
hybrid_scores = self.combine_faiss_bm25_scores(D[0], bm25_scores, I)
# Filter passages based on hybrid score
passages = [self.cleaned_passages[i] for i, score in zip(I[0], hybrid_scores) if score > threshold]
logging.info(f"Retrieved {len(passages)} passages using hybrid search for query.")
return passages
except Exception as e:
logging.error(f"Error in retrieving passages: {e}")
return []
def combine_faiss_bm25_scores(self, faiss_scores, bm25_scores, passage_indices):
# Normalize and combine FAISS and BM25 scores
bm25_scores = np.array(bm25_scores)[passage_indices]
faiss_scores = np.array(faiss_scores)
# Convert FAISS distances into similarities by inverting the scale
faiss_similarities = 1 / (faiss_scores + 1e-6) # Avoid division by zero
# Normalize scores (scale between 0 and 1)
bm25_scores = (bm25_scores - np.min(bm25_scores)) / (np.max(bm25_scores) - np.min(bm25_scores) + 1e-6)
faiss_similarities = (faiss_similarities - np.min(faiss_similarities)) / (np.max(faiss_similarities) - np.min(faiss_similarities) + 1e-6)
# Weighted combination (you can adjust weights)
combined_scores = 0.7 * faiss_similarities + 0.3 * bm25_scores
combined_scores = np.squeeze(combined_scores) # Ensure it's a single-dimensional array
return combined_scores
def filter_passages(self, query, passages):
try:
query_embedding = self.model.encode(query, convert_to_tensor=True)
passage_embeddings = self.model.encode([p['passage'] for p in passages], convert_to_tensor=True)
similarities = util.pytorch_cos_sim(query_embedding, passage_embeddings)
top_k = min(10, len(passages))
top_indices = similarities.topk(k=top_k)[1].tolist()[0]
selected_passages = []
used_titles = set()
for i in top_indices:
if passages[i]['title'] not in used_titles:
selected_passages.append(passages[i])
used_titles.add(passages[i]['title'])
return selected_passages
except Exception as e:
logging.error(f"Error in filtering passages: {e}")
return []
def generate_answer(self, query, passages):
try:
context = " ".join([p['passage'] for p in passages[:5]])
answer = self.qa_model(question=query, context=context)
logging.info(f"Generated answer: {answer['answer']}")
return answer['answer']
except Exception as e:
logging.error(f"Error in generating answer: {e}")
return "Insufficient information."
def post_process_answer(self, answer, confidence=0.2):
answer = re.sub(r'^.*\?', '', answer).strip()
answer = answer.capitalize()
if len(answer) > 100:
truncated = re.match(r'^(.*?[.!?])\s', answer)
if truncated:
answer = truncated.group(1)
if confidence < 0.2:
logging.warning(f"Answer confidence too low: {confidence}")
return "I'm unsure about this answer."
return answer
def process_query(self, query):
question_type = self.predict_question_type(query)
retrieved_passages = self.retrieve_passages(query, k=100, threshold=0.7)
if not retrieved_passages:
return {"query": query, "answer": "No relevant information found", "question_type": question_type, "evidence_list": []}
filtered_passages = self.filter_passages(query, retrieved_passages)
raw_answer = self.generate_answer(query, filtered_passages)
evidence_count = min(len(filtered_passages), 4)
evidence_list = [
{
"title": p['title'],
"author": p['author'],
"url": p['url'],
"source": p['source'],
"category": p['category'],
"published_at": p['published_at'],
"fact": self.extract_fact(p['passage'], query)
} for p in filtered_passages[:evidence_count]
]
final_answer = self.post_process_answer(raw_answer)
return {
"query": query,
"answer": final_answer,
"question_type": question_type,
"evidence_list": evidence_list
}
def extract_fact(self, passage, query):
# Extracting most relevant sentence from passage
sentences = sent_tokenize(passage)
query_keywords = set(query.lower().split())
best_sentence = max(sentences, key=lambda s: len(set(s.lower().split()) & query_keywords), default="")
return best_sentence if best_sentence else (sentences[0] if sentences else "")