Paul Engstler
Initial commit
92f0e98
import torch
import numpy as np
from functools import reduce
from copy import deepcopy
from torch.optim import Optimizer
#%% Helper Functions for L-BFGS
def is_legal(v):
"""
Checks that tensor is not NaN or Inf.
Inputs:
v (tensor): tensor to be checked
"""
legal = not torch.isnan(v).any() and not torch.isinf(v)
return legal
def polyinterp(points, x_min_bound=None, x_max_bound=None, plot=False):
"""
Gives the minimizer and minimum of the interpolating polynomial over given points
based on function and derivative information. Defaults to bisection if no critical
points are valid.
Based on polyinterp.m Matlab function in minFunc by Mark Schmidt with some slight
modifications.
Implemented by: Hao-Jun Michael Shi and Dheevatsa Mudigere
Last edited 12/6/18.
Inputs:
points (nparray): two-dimensional array with each point of form [x f g]
x_min_bound (float): minimum value that brackets minimum (default: minimum of points)
x_max_bound (float): maximum value that brackets minimum (default: maximum of points)
plot (bool): plot interpolating polynomial
Outputs:
x_sol (float): minimizer of interpolating polynomial
F_min (float): minimum of interpolating polynomial
Note:
. Set f or g to np.nan if they are unknown
"""
no_points = points.shape[0]
order = np.sum(1 - np.isnan(points[:,1:3]).astype('int')) - 1
x_min = np.min(points[:, 0])
x_max = np.max(points[:, 0])
# compute bounds of interpolation area
if(x_min_bound is None):
x_min_bound = x_min
if(x_max_bound is None):
x_max_bound = x_max
# explicit formula for quadratic interpolation
if no_points == 2 and order == 2 and plot is False:
# Solution to quadratic interpolation is given by:
# a = -(f1 - f2 - g1(x1 - x2))/(x1 - x2)^2
# x_min = x1 - g1/(2a)
# if x1 = 0, then is given by:
# x_min = - (g1*x2^2)/(2(f2 - f1 - g1*x2))
if(points[0, 0] == 0):
x_sol = -points[0, 2]*points[1, 0]**2/(2*(points[1, 1] - points[0, 1] - points[0, 2]*points[1, 0]))
else:
a = -(points[0, 1] - points[1, 1] - points[0, 2]*(points[0, 0] - points[1, 0]))/(points[0, 0] - points[1, 0])**2
x_sol = points[0, 0] - points[0, 2]/(2*a)
x_sol = np.minimum(np.maximum(x_min_bound, x_sol), x_max_bound)
# explicit formula for cubic interpolation
elif no_points == 2 and order == 3 and plot is False:
# Solution to cubic interpolation is given by:
# d1 = g1 + g2 - 3((f1 - f2)/(x1 - x2))
# d2 = sqrt(d1^2 - g1*g2)
# x_min = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2))
d1 = points[0, 2] + points[1, 2] - 3*((points[0, 1] - points[1, 1])/(points[0, 0] - points[1, 0]))
d2 = np.sqrt(d1**2 - points[0, 2]*points[1, 2])
if np.isreal(d2):
x_sol = points[1, 0] - (points[1, 0] - points[0, 0])*((points[1, 2] + d2 - d1)/(points[1, 2] - points[0, 2] + 2*d2))
x_sol = np.minimum(np.maximum(x_min_bound, x_sol), x_max_bound)
else:
x_sol = (x_max_bound + x_min_bound)/2
# solve linear system
else:
# define linear constraints
A = np.zeros((0, order+1))
b = np.zeros((0, 1))
# add linear constraints on function values
for i in range(no_points):
if not np.isnan(points[i, 1]):
constraint = np.zeros((1, order+1))
for j in range(order, -1, -1):
constraint[0, order - j] = points[i, 0]**j
A = np.append(A, constraint, 0)
b = np.append(b, points[i, 1])
# add linear constraints on gradient values
for i in range(no_points):
if not np.isnan(points[i, 2]):
constraint = np.zeros((1, order+1))
for j in range(order):
constraint[0, j] = (order-j)*points[i,0]**(order-j-1)
A = np.append(A, constraint, 0)
b = np.append(b, points[i, 2])
# check if system is solvable
if(A.shape[0] != A.shape[1] or np.linalg.matrix_rank(A) != A.shape[0]):
x_sol = (x_min_bound + x_max_bound)/2
f_min = np.Inf
else:
# solve linear system for interpolating polynomial
coeff = np.linalg.solve(A, b)
# compute critical points
dcoeff = np.zeros(order)
for i in range(len(coeff) - 1):
dcoeff[i] = coeff[i]*(order-i)
crit_pts = np.array([x_min_bound, x_max_bound])
crit_pts = np.append(crit_pts, points[:, 0])
if not np.isinf(dcoeff).any():
roots = np.roots(dcoeff)
crit_pts = np.append(crit_pts, roots)
# test critical points
f_min = np.Inf
x_sol = (x_min_bound + x_max_bound)/2 # defaults to bisection
for crit_pt in crit_pts:
if np.isreal(crit_pt) and crit_pt >= x_min_bound and crit_pt <= x_max_bound:
F_cp = np.polyval(coeff, crit_pt)
if np.isreal(F_cp) and F_cp < f_min:
x_sol = np.real(crit_pt)
f_min = np.real(F_cp)
if (plot):
import matplotlib.pyplot as plt
plt.figure()
x = np.arange(x_min_bound, x_max_bound, (x_max_bound - x_min_bound)/10000)
f = np.polyval(coeff, x)
plt.plot(x, f)
plt.plot(x_sol, f_min, 'x')
return x_sol
#%% L-BFGS Optimizer
class LBFGS(Optimizer):
"""
Implements the L-BFGS algorithm. Compatible with multi-batch and full-overlap
L-BFGS implementations and (stochastic) Powell damping. Partly based on the
original L-BFGS implementation in PyTorch, Mark Schmidt's minFunc MATLAB code,
and Michael Overton's weak Wolfe line search MATLAB code.
Implemented by: Hao-Jun Michael Shi and Dheevatsa Mudigere
Last edited 12/6/18.
Warnings:
. Does not support per-parameter options and parameter groups.
. All parameters have to be on a single device.
Inputs:
lr (float): steplength or learning rate (default: 1)
history_size (int): update history size (default: 10)
line_search (str): designates line search to use (default: 'Wolfe')
Options:
'None': uses steplength designated in algorithm
'Armijo': uses Armijo backtracking line search
'Wolfe': uses Armijo-Wolfe bracketing line search
dtype: data type (default: torch.float)
debug (bool): debugging mode
References:
[1] Berahas, Albert S., Jorge Nocedal, and Martin Takác. "A Multi-Batch L-BFGS
Method for Machine Learning." Advances in Neural Information Processing
Systems. 2016.
[2] Bollapragada, Raghu, et al. "A Progressive Batching L-BFGS Method for Machine
Learning." International Conference on Machine Learning. 2018.
[3] Lewis, Adrian S., and Michael L. Overton. "Nonsmooth Optimization via Quasi-Newton
Methods." Mathematical Programming 141.1-2 (2013): 135-163.
[4] Liu, Dong C., and Jorge Nocedal. "On the Limited Memory BFGS Method for
Large Scale Optimization." Mathematical Programming 45.1-3 (1989): 503-528.
[5] Nocedal, Jorge. "Updating Quasi-Newton Matrices With Limited Storage."
Mathematics of Computation 35.151 (1980): 773-782.
[6] Nocedal, Jorge, and Stephen J. Wright. "Numerical Optimization." Springer New York,
2006.
[7] Schmidt, Mark. "minFunc: Unconstrained Differentiable Multivariate Optimization
in Matlab." Software available at http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
(2005).
[8] Schraudolph, Nicol N., Jin Yu, and Simon Günter. "A Stochastic Quasi-Newton
Method for Online Convex Optimization." Artificial Intelligence and Statistics.
2007.
[9] Wang, Xiao, et al. "Stochastic Quasi-Newton Methods for Nonconvex Stochastic
Optimization." SIAM Journal on Optimization 27.2 (2017): 927-956.
"""
def __init__(self, params, lr=1, history_size=10, line_search='Wolfe',
dtype=torch.float, debug=False):
# ensure inputs are valid
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0 <= history_size:
raise ValueError("Invalid history size: {}".format(history_size))
if line_search not in ['Armijo', 'Wolfe', 'None']:
raise ValueError("Invalid line search: {}".format(line_search))
defaults = dict(lr=lr, history_size=history_size, line_search=line_search,
dtype=dtype, debug=debug)
super(LBFGS, self).__init__(params, defaults)
if len(self.param_groups) != 1:
raise ValueError("L-BFGS doesn't support per-parameter options "
"(parameter groups)")
self._params = self.param_groups[0]['params']
self._numel_cache = None
state = self.state['global_state']
state.setdefault('n_iter', 0)
state.setdefault('curv_skips', 0)
state.setdefault('fail_skips', 0)
state.setdefault('H_diag',1)
state.setdefault('fail', True)
state['old_dirs'] = []
state['old_stps'] = []
def _numel(self):
if self._numel_cache is None:
self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
return self._numel_cache
def _gather_flat_grad(self):
views = []
for p in self._params:
if p.grad is None:
view = p.data.new(p.data.numel()).zero_()
elif p.grad.data.is_sparse:
view = p.grad.data.to_dense().view(-1)
else:
view = p.grad.data.view(-1)
views.append(view)
return torch.cat(views, 0)
def _add_update(self, step_size, update):
offset = 0
for p in self._params:
numel = p.numel()
# view as to avoid deprecated pointwise semantics
p.data.add_(step_size, update[offset:offset + numel].view_as(p.data))
offset += numel
assert offset == self._numel()
def _copy_params(self):
current_params = []
for param in self._params:
current_params.append(deepcopy(param.data))
return current_params
def _load_params(self, current_params):
i = 0
for param in self._params:
param.data[:] = current_params[i]
i += 1
def line_search(self, line_search):
"""
Switches line search option.
Inputs:
line_search (str): designates line search to use
Options:
'None': uses steplength designated in algorithm
'Armijo': uses Armijo backtracking line search
'Wolfe': uses Armijo-Wolfe bracketing line search
"""
group = self.param_groups[0]
group['line_search'] = line_search
return
def two_loop_recursion(self, vec):
"""
Performs two-loop recursion on given vector to obtain Hv.
Inputs:
vec (tensor): 1-D tensor to apply two-loop recursion to
Output:
r (tensor): matrix-vector product Hv
"""
group = self.param_groups[0]
history_size = group['history_size']
state = self.state['global_state']
old_dirs = state.get('old_dirs') # change in gradients
old_stps = state.get('old_stps') # change in iterates
H_diag = state.get('H_diag')
# compute the product of the inverse Hessian approximation and the gradient
num_old = len(old_dirs)
if 'rho' not in state:
state['rho'] = [None] * history_size
state['alpha'] = [None] * history_size
rho = state['rho']
alpha = state['alpha']
for i in range(num_old):
rho[i] = 1. / old_stps[i].dot(old_dirs[i])
q = vec
for i in range(num_old - 1, -1, -1):
alpha[i] = old_dirs[i].dot(q) * rho[i]
q.add_(-alpha[i], old_stps[i])
# multiply by initial Hessian
# r/d is the final direction
r = torch.mul(q, H_diag)
for i in range(num_old):
beta = old_stps[i].dot(r) * rho[i]
r.add_(alpha[i] - beta, old_dirs[i])
return r
def curvature_update(self, flat_grad, eps=1e-2, damping=False):
"""
Performs curvature update.
Inputs:
flat_grad (tensor): 1-D tensor of flattened gradient for computing
gradient difference with previously stored gradient
eps (float): constant for curvature pair rejection or damping (default: 1e-2)
damping (bool): flag for using Powell damping (default: False)
"""
assert len(self.param_groups) == 1
# load parameters
if(eps <= 0):
raise(ValueError('Invalid eps; must be positive.'))
group = self.param_groups[0]
history_size = group['history_size']
debug = group['debug']
# variables cached in state (for tracing)
state = self.state['global_state']
fail = state.get('fail')
# check if line search failed
if not fail:
d = state.get('d')
t = state.get('t')
old_dirs = state.get('old_dirs')
old_stps = state.get('old_stps')
H_diag = state.get('H_diag')
prev_flat_grad = state.get('prev_flat_grad')
Bs = state.get('Bs')
# compute y's
y = flat_grad.sub(prev_flat_grad)
s = d.mul(t)
sBs = s.dot(Bs)
ys = y.dot(s) # y*s
# update L-BFGS matrix
if ys > eps*sBs or damping == True:
# perform Powell damping
if damping == True and ys < eps*sBs:
if debug:
print('Applying Powell damping...')
theta = ((1-eps)*sBs)/(sBs - ys)
y = theta*y + (1-theta)*Bs
# updating memory
if len(old_dirs) == history_size:
# shift history by one (limited-memory)
old_dirs.pop(0)
old_stps.pop(0)
# store new direction/step
old_dirs.append(s)
old_stps.append(y)
# update scale of initial Hessian approximation
H_diag = ys / y.dot(y) # (y*y)
state['old_dirs'] = old_dirs
state['old_stps'] = old_stps
state['H_diag'] = H_diag
else:
# save skip
state['curv_skips'] += 1
if debug:
print('Curvature pair skipped due to failed criterion')
else:
# save skip
state['fail_skips'] += 1
if debug:
print('Line search failed; curvature pair update skipped')
return
def _step(self, p_k, g_Ok, g_Sk=None, options={}):
"""
Performs a single optimization step.
Inputs:
p_k (tensor): 1-D tensor specifying search direction
g_Ok (tensor): 1-D tensor of flattened gradient over overlap O_k used
for gradient differencing in curvature pair update
g_Sk (tensor): 1-D tensor of flattened gradient over full sample S_k
used for curvature pair damping or rejection criterion,
if None, will use g_Ok (default: None)
options (dict): contains options for performing line search
Options for Armijo backtracking line search:
'closure' (callable): reevaluates model and returns function value
'current_loss' (tensor): objective value at current iterate (default: F(x_k))
'gtd' (tensor): inner product g_Ok'd in line search (default: g_Ok'd)
'eta' (tensor): factor for decreasing steplength > 0 (default: 2)
'c1' (tensor): sufficient decrease constant in (0, 1) (default: 1e-4)
'max_ls' (int): maximum number of line search steps permitted (default: 10)
'interpolate' (bool): flag for using interpolation (default: True)
'inplace' (bool): flag for inplace operations (default: True)
'ls_debug' (bool): debugging mode for line search
Options for Wolfe line search:
'closure' (callable): reevaluates model and returns function value
'current_loss' (tensor): objective value at current iterate (default: F(x_k))
'gtd' (tensor): inner product g_Ok'd in line search (default: g_Ok'd)
'eta' (float): factor for extrapolation (default: 2)
'c1' (float): sufficient decrease constant in (0, 1) (default: 1e-4)
'c2' (float): curvature condition constant in (0, 1) (default: 0.9)
'max_ls' (int): maximum number of line search steps permitted (default: 10)
'interpolate' (bool): flag for using interpolation (default: True)
'inplace' (bool): flag for inplace operations (default: True)
'ls_debug' (bool): debugging mode for line search
Outputs (depends on line search):
. No line search:
t (float): steplength
. Armijo backtracking line search:
F_new (tensor): loss function at new iterate
t (tensor): final steplength
ls_step (int): number of backtracks
closure_eval (int): number of closure evaluations
desc_dir (bool): descent direction flag
True: p_k is descent direction with respect to the line search
function
False: p_k is not a descent direction with respect to the line
search function
fail (bool): failure flag
True: line search reached maximum number of iterations, failed
False: line search succeeded
. Wolfe line search:
F_new (tensor): loss function at new iterate
g_new (tensor): gradient at new iterate
t (float): final steplength
ls_step (int): number of backtracks
closure_eval (int): number of closure evaluations
grad_eval (int): number of gradient evaluations
desc_dir (bool): descent direction flag
True: p_k is descent direction with respect to the line search
function
False: p_k is not a descent direction with respect to the line
search function
fail (bool): failure flag
True: line search reached maximum number of iterations, failed
False: line search succeeded
Notes:
. If encountering line search failure in the deterministic setting, one
should try increasing the maximum number of line search steps max_ls.
"""
assert len(self.param_groups) == 1
# load parameter options
group = self.param_groups[0]
lr = group['lr']
line_search = group['line_search']
dtype = group['dtype']
debug = group['debug']
# variables cached in state (for tracing)
state = self.state['global_state']
d = state.get('d')
t = state.get('t')
prev_flat_grad = state.get('prev_flat_grad')
Bs = state.get('Bs')
# keep track of nb of iterations
state['n_iter'] += 1
# set search direction
d = p_k
# modify previous gradient
if prev_flat_grad is None:
prev_flat_grad = g_Ok.clone()
else:
prev_flat_grad.copy_(g_Ok)
# set initial step size
t = lr
# closure evaluation counter
closure_eval = 0
if g_Sk is None:
g_Sk = g_Ok.clone()
# perform Armijo backtracking line search
if(line_search == 'Armijo'):
# load options
if(options):
if('closure' not in options.keys()):
raise(ValueError('closure option not specified.'))
else:
closure = options['closure']
if('gtd' not in options.keys()):
gtd = g_Ok.dot(d)
else:
gtd = options['gtd']
if('current_loss' not in options.keys()):
F_k = closure()
closure_eval += 1
else:
F_k = options['current_loss']
if('eta' not in options.keys()):
eta = 2
elif(options['eta'] <= 0):
raise(ValueError('Invalid eta; must be positive.'))
else:
eta = options['eta']
if('c1' not in options.keys()):
c1 = 1e-4
elif(options['c1'] >= 1 or options['c1'] <= 0):
raise(ValueError('Invalid c1; must be strictly between 0 and 1.'))
else:
c1 = options['c1']
if('max_ls' not in options.keys()):
max_ls = 10
elif(options['max_ls'] <= 0):
raise(ValueError('Invalid max_ls; must be positive.'))
else:
max_ls = options['max_ls']
if('interpolate' not in options.keys()):
interpolate = True
else:
interpolate = options['interpolate']
if('inplace' not in options.keys()):
inplace = True
else:
inplace = options['inplace']
if('ls_debug' not in options.keys()):
ls_debug = False
else:
ls_debug = options['ls_debug']
else:
raise(ValueError('Options are not specified; need closure evaluating function.'))
# initialize values
if(interpolate):
if(torch.cuda.is_available()):
F_prev = torch.tensor(np.nan, dtype=dtype).cuda()
else:
F_prev = torch.tensor(np.nan, dtype=dtype)
ls_step = 0
t_prev = 0 # old steplength
fail = False # failure flag
# begin print for debug mode
if ls_debug:
print('==================================== Begin Armijo line search ===================================')
print('F(x): %.8e g*d: %.8e' %(F_k, gtd))
# check if search direction is descent direction
if gtd >= 0:
desc_dir = False
if debug:
print('Not a descent direction!')
else:
desc_dir = True
# store values if not in-place
if not inplace:
current_params = self._copy_params()
# update and evaluate at new point
self._add_update(t, d)
F_new = closure()
closure_eval += 1
# print info if debugging
if(ls_debug):
print('LS Step: %d t: %.8e F(x+td): %.8e F-c1*t*g*d: %.8e F(x): %.8e'
%(ls_step, t, F_new, F_k + c1*t*gtd, F_k))
# check Armijo condition
while F_new > F_k + c1*t*gtd or not is_legal(F_new):
# check if maximum number of iterations reached
if(ls_step >= max_ls):
if inplace:
self._add_update(-t, d)
else:
self._load_params(current_params)
t = 0
F_new = closure()
closure_eval += 1
fail = True
break
else:
# store current steplength
t_new = t
# compute new steplength
# if first step or not interpolating, then multiply by factor
if(ls_step == 0 or not interpolate or not is_legal(F_new)):
t = t/eta
# if second step, use function value at new point along with
# gradient and function at current iterate
elif(ls_step == 1 or not is_legal(F_prev)):
t = polyinterp(np.array([[0, F_k.item(), gtd.item()], [t_new, F_new.item(), np.nan]]))
# otherwise, use function values at new point, previous point,
# and gradient and function at current iterate
else:
t = polyinterp(np.array([[0, F_k.item(), gtd.item()], [t_new, F_new.item(), np.nan],
[t_prev, F_prev.item(), np.nan]]))
# if values are too extreme, adjust t
if(interpolate):
if(t < 1e-3*t_new):
t = 1e-3*t_new
elif(t > 0.6*t_new):
t = 0.6*t_new
# store old point
F_prev = F_new
t_prev = t_new
# update iterate and reevaluate
if inplace:
self._add_update(t-t_new, d)
else:
self._load_params(current_params)
self._add_update(t, d)
F_new = closure()
closure_eval += 1
ls_step += 1 # iterate
# print info if debugging
if(ls_debug):
print('LS Step: %d t: %.8e F(x+td): %.8e F-c1*t*g*d: %.8e F(x): %.8e'
%(ls_step, t, F_new, F_k + c1*t*gtd, F_k))
# store Bs
if Bs is None:
Bs = (g_Sk.mul(-t)).clone()
else:
Bs.copy_(g_Sk.mul(-t))
# print final steplength
if ls_debug:
print('Final Steplength:', t)
print('===================================== End Armijo line search ====================================')
state['d'] = d
state['prev_flat_grad'] = prev_flat_grad
state['t'] = t
state['Bs'] = Bs
state['fail'] = fail
return F_new, t, ls_step, closure_eval, desc_dir, fail
# perform weak Wolfe line search
elif(line_search == 'Wolfe'):
# load options
if(options):
if('closure' not in options.keys()):
raise(ValueError('closure option not specified.'))
else:
closure = options['closure']
if('current_loss' not in options.keys()):
F_k = closure()
closure_eval += 1
else:
F_k = options['current_loss']
if('gtd' not in options.keys()):
gtd = g_Ok.dot(d)
else:
gtd = options['gtd']
if('eta' not in options.keys()):
eta = 2
elif(options['eta'] <= 1):
raise(ValueError('Invalid eta; must be greater than 1.'))
else:
eta = options['eta']
if('c1' not in options.keys()):
c1 = 1e-4
elif(options['c1'] >= 1 or options['c1'] <= 0):
raise(ValueError('Invalid c1; must be strictly between 0 and 1.'))
else:
c1 = options['c1']
if('c2' not in options.keys()):
c2 = 0.9
elif(options['c2'] >= 1 or options['c2'] <= 0):
raise(ValueError('Invalid c2; must be strictly between 0 and 1.'))
elif(options['c2'] <= c1):
raise(ValueError('Invalid c2; must be strictly larger than c1.'))
else:
c2 = options['c2']
if('max_ls' not in options.keys()):
max_ls = 10
elif(options['max_ls'] <= 0):
raise(ValueError('Invalid max_ls; must be positive.'))
else:
max_ls = options['max_ls']
if('interpolate' not in options.keys()):
interpolate = True
else:
interpolate = options['interpolate']
if('inplace' not in options.keys()):
inplace = True
else:
inplace = options['inplace']
if('ls_debug' not in options.keys()):
ls_debug = False
else:
ls_debug = options['ls_debug']
else:
raise(ValueError('Options are not specified; need closure evaluating function.'))
# initialize counters
ls_step = 0
grad_eval = 0 # tracks gradient evaluations
t_prev = 0 # old steplength
# initialize bracketing variables and flag
alpha = 0
beta = float('Inf')
fail = False
# initialize values for line search
if(interpolate):
F_a = F_k
g_a = gtd
if(torch.cuda.is_available()):
F_b = torch.tensor(np.nan, dtype=dtype).cuda()
g_b = torch.tensor(np.nan, dtype=dtype).cuda()
else:
F_b = torch.tensor(np.nan, dtype=dtype)
g_b = torch.tensor(np.nan, dtype=dtype)
# begin print for debug mode
if ls_debug:
print('==================================== Begin Wolfe line search ====================================')
print('F(x): %.8e g*d: %.8e' %(F_k, gtd))
# check if search direction is descent direction
if gtd >= 0:
desc_dir = False
if debug:
print('Not a descent direction!')
else:
desc_dir = True
# store values if not in-place
if not inplace:
current_params = self._copy_params()
# update and evaluate at new point
self._add_update(t, d)
F_new = closure()
closure_eval += 1
# main loop
while True:
# check if maximum number of line search steps have been reached
if(ls_step >= max_ls):
if inplace:
self._add_update(-t, d)
else:
self._load_params(current_params)
t = 0
F_new = closure()
F_new.backward()
g_new = self._gather_flat_grad()
closure_eval += 1
grad_eval += 1
fail = True
break
# print info if debugging
if(ls_debug):
print('LS Step: %d t: %.8e alpha: %.8e beta: %.8e'
%(ls_step, t, alpha, beta))
print('Armijo: F(x+td): %.8e F-c1*t*g*d: %.8e F(x): %.8e'
%(F_new, F_k + c1*t*gtd, F_k))
# check Armijo condition
if(F_new > F_k + c1*t*gtd):
# set upper bound
beta = t
t_prev = t
# update interpolation quantities
if(interpolate):
F_b = F_new
if(torch.cuda.is_available()):
g_b = torch.tensor(np.nan, dtype=dtype).cuda()
else:
g_b = torch.tensor(np.nan, dtype=dtype)
else:
# compute gradient
F_new.backward()
g_new = self._gather_flat_grad()
grad_eval += 1
gtd_new = g_new.dot(d)
# print info if debugging
if(ls_debug):
print('Wolfe: g(x+td)*d: %.8e c2*g*d: %.8e gtd: %.8e'
%(gtd_new, c2*gtd, gtd))
# check curvature condition
if(gtd_new < c2*gtd):
# set lower bound
alpha = t
t_prev = t
# update interpolation quantities
if(interpolate):
F_a = F_new
g_a = gtd_new
else:
break
# compute new steplength
# if first step or not interpolating, then bisect or multiply by factor
if(not interpolate or not is_legal(F_b)):
if(beta == float('Inf')):
t = eta*t
else:
t = (alpha + beta)/2.0
# otherwise interpolate between a and b
else:
t = polyinterp(np.array([[alpha, F_a.item(), g_a.item()],[beta, F_b.item(), g_b.item()]]))
# if values are too extreme, adjust t
if(beta == float('Inf')):
if(t > 2*eta*t_prev):
t = 2*eta*t_prev
elif(t < eta*t_prev):
t = eta*t_prev
else:
if(t < alpha + 0.2*(beta - alpha)):
t = alpha + 0.2*(beta - alpha)
elif(t > (beta - alpha)/2.0):
t = (beta - alpha)/2.0
# if we obtain nonsensical value from interpolation
if(t <= 0):
t = (beta - alpha)/2.0
# update parameters
if inplace:
self._add_update(t - t_prev, d)
else:
self._load_params(current_params)
self._add_update(t, d)
# evaluate closure
F_new = closure()
closure_eval += 1
ls_step += 1
# store Bs
if Bs is None:
Bs = (g_Sk.mul(-t)).clone()
else:
Bs.copy_(g_Sk.mul(-t))
# print final steplength
if ls_debug:
print('Final Steplength:', t)
print('===================================== End Wolfe line search =====================================')
state['d'] = d
state['prev_flat_grad'] = prev_flat_grad
state['t'] = t
state['Bs'] = Bs
state['fail'] = fail
return F_new, g_new, t, ls_step, closure_eval, grad_eval, desc_dir, fail
else:
# perform update
self._add_update(t, d)
# store Bs
if Bs is None:
Bs = (g_Sk.mul(-t)).clone()
else:
Bs.copy_(g_Sk.mul(-t))
state['d'] = d
state['prev_flat_grad'] = prev_flat_grad
state['t'] = t
state['Bs'] = Bs
state['fail'] = False
return t
def step(self, p_k, g_Ok, g_Sk=None, options={}):
return self._step(p_k, g_Ok, g_Sk, options)
#%% Full-Batch (Deterministic) L-BFGS Optimizer (Wrapper)
class FullBatchLBFGS(LBFGS):
"""
Implements full-batch or deterministic L-BFGS algorithm. Compatible with
Powell damping. Can be used when evaluating a deterministic function and
gradient. Wraps the LBFGS optimizer. Performs the two-loop recursion,
updating, and curvature updating in a single step.
Implemented by: Hao-Jun Michael Shi and Dheevatsa Mudigere
Last edited 11/15/18.
Warnings:
. Does not support per-parameter options and parameter groups.
. All parameters have to be on a single device.
Inputs:
lr (float): steplength or learning rate (default: 1)
history_size (int): update history size (default: 10)
line_search (str): designates line search to use (default: 'Wolfe')
Options:
'None': uses steplength designated in algorithm
'Armijo': uses Armijo backtracking line search
'Wolfe': uses Armijo-Wolfe bracketing line search
dtype: data type (default: torch.float)
debug (bool): debugging mode
"""
def __init__(self, params, lr=1, history_size=10, line_search='Wolfe',
dtype=torch.float, debug=False):
super(FullBatchLBFGS, self).__init__(params, lr, history_size, line_search,
dtype, debug)
def step(self, options={}):
"""
Performs a single optimization step.
Inputs:
options (dict): contains options for performing line search
General Options:
'eps' (float): constant for curvature pair rejection or damping (default: 1e-2)
'damping' (bool): flag for using Powell damping (default: False)
Options for Armijo backtracking line search:
'closure' (callable): reevaluates model and returns function value
'current_loss' (tensor): objective value at current iterate (default: F(x_k))
'gtd' (tensor): inner product g_Ok'd in line search (default: g_Ok'd)
'eta' (tensor): factor for decreasing steplength > 0 (default: 2)
'c1' (tensor): sufficient decrease constant in (0, 1) (default: 1e-4)
'max_ls' (int): maximum number of line search steps permitted (default: 10)
'interpolate' (bool): flag for using interpolation (default: True)
'inplace' (bool): flag for inplace operations (default: True)
'ls_debug' (bool): debugging mode for line search
Options for Wolfe line search:
'closure' (callable): reevaluates model and returns function value
'current_loss' (tensor): objective value at current iterate (default: F(x_k))
'gtd' (tensor): inner product g_Ok'd in line search (default: g_Ok'd)
'eta' (float): factor for extrapolation (default: 2)
'c1' (float): sufficient decrease constant in (0, 1) (default: 1e-4)
'c2' (float): curvature condition constant in (0, 1) (default: 0.9)
'max_ls' (int): maximum number of line search steps permitted (default: 10)
'interpolate' (bool): flag for using interpolation (default: True)
'inplace' (bool): flag for inplace operations (default: True)
'ls_debug' (bool): debugging mode for line search
Outputs (depends on line search):
. No line search:
t (float): steplength
. Armijo backtracking line search:
F_new (tensor): loss function at new iterate
t (tensor): final steplength
ls_step (int): number of backtracks
closure_eval (int): number of closure evaluations
desc_dir (bool): descent direction flag
True: p_k is descent direction with respect to the line search
function
False: p_k is not a descent direction with respect to the line
search function
fail (bool): failure flag
True: line search reached maximum number of iterations, failed
False: line search succeeded
. Wolfe line search:
F_new (tensor): loss function at new iterate
g_new (tensor): gradient at new iterate
t (float): final steplength
ls_step (int): number of backtracks
closure_eval (int): number of closure evaluations
grad_eval (int): number of gradient evaluations
desc_dir (bool): descent direction flag
True: p_k is descent direction with respect to the line search
function
False: p_k is not a descent direction with respect to the line
search function
fail (bool): failure flag
True: line search reached maximum number of iterations, failed
False: line search succeeded
Notes:
. If encountering line search failure in the deterministic setting, one
should try increasing the maximum number of line search steps max_ls.
"""
# load options for damping and eps
if('damping' not in options.keys()):
damping = False
else:
damping = options['damping']
if('eps' not in options.keys()):
eps = 1e-2
else:
eps = options['eps']
# gather gradient
grad = self._gather_flat_grad()
# update curvature if after 1st iteration
state = self.state['global_state']
if(state['n_iter'] > 0):
self.curvature_update(grad, eps, damping)
# compute search direction
p = self.two_loop_recursion(-grad)
# take step
return self._step(p, grad, options=options)