File size: 5,008 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from torch.utils.data.sampler import Sampler
from torch.utils.data.sampler import BatchSampler
import numpy as np
import torch
import math
import torch.distributed as dist
from lib.config import cfg


class ImageSizeBatchSampler(Sampler):
    def __init__(self, sampler, batch_size, drop_last, sampler_meta):
        self.sampler = sampler
        self.batch_size = batch_size
        self.drop_last = drop_last
        self.strategy = sampler_meta.strategy
        self.hmin, self.wmin = sampler_meta.min_hw
        self.hmax, self.wmax = sampler_meta.max_hw
        self.divisor = 32
        if cfg.fix_random:
            np.random.seed(0)

    def generate_height_width(self):
        if self.strategy == 'origin':
            return -1, -1
        h = np.random.randint(self.hmin, self.hmax + 1)
        w = np.random.randint(self.wmin, self.wmax + 1)
        h = (h | (self.divisor - 1)) + 1
        w = (w | (self.divisor - 1)) + 1
        return h, w

    def __iter__(self):
        batch = []
        h, w = self.generate_height_width()
        for idx in self.sampler:
            batch.append((idx, h, w))
            if len(batch) == self.batch_size:
                h, w = self.generate_height_width()
                yield batch
                batch = []
        if len(batch) > 0 and not self.drop_last:
            yield batch

    def __len__(self):
        if self.drop_last:
            return len(self.sampler) // self.batch_size
        else:
            return (len(self.sampler) + self.batch_size - 1) // self.batch_size


class IterationBasedBatchSampler(BatchSampler):
    """
    Wraps a BatchSampler, resampling from it until
    a specified number of iterations have been sampled
    """

    def __init__(self, batch_sampler, num_iterations, start_iter=0):
        self.batch_sampler = batch_sampler
        self.sampler = self.batch_sampler.sampler
        self.num_iterations = num_iterations
        self.start_iter = start_iter

    def __iter__(self):
        iteration = self.start_iter
        while iteration <= self.num_iterations:
            for batch in self.batch_sampler:
                iteration += 1
                if iteration > self.num_iterations:
                    break
                yield batch

    def __len__(self):
        return self.num_iterations


class DistributedSampler(Sampler):
    """Sampler that restricts data loading to a subset of the dataset.
    It is especially useful in conjunction with
    :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
    process can pass a DistributedSampler instance as a DataLoader sampler,
    and load a subset of the original dataset that is exclusive to it.
    .. note::
        Dataset is assumed to be of constant size.
    Arguments:
        dataset: Dataset used for sampling.
        num_replicas (optional): Number of processes participating in
            distributed training.
        rank (optional): Rank of the current process within num_replicas.
    """

    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
        self.total_size = self.num_samples * self.num_replicas
        self.shuffle = shuffle

    def __iter__(self):
        if self.shuffle:
            # deterministically shuffle based on epoch
            g = torch.Generator()
            g.manual_seed(self.epoch)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = torch.arange(len(self.dataset)).tolist()

        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        offset = self.num_samples * self.rank
        indices = indices[offset:offset+self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch


class FrameSampler(Sampler):
    """Sampler certain frames for test
    """

    def __init__(self, dataset):
        inds = np.arange(0, len(dataset.ims))
        ni = len(dataset.ims) // dataset.num_cams
        inds = inds.reshape(ni, -1)[::cfg.test.frame_sampler_interval]
        self.inds = inds.ravel()

    def __iter__(self):
        return iter(self.inds)

    def __len__(self):
        return len(self.inds)