File size: 7,645 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import os
import matplotlib.patches as patches
from sklearn.manifold import TSNE
import open3d as o3d

kintree = {
    'kintree': [[1, 0], [2, 1], [3, 2], [4, 3], [5, 1], [6, 5], [7, 6], [8, 1],
                [9, 8], [10, 9], [11, 10], [12, 8], [13, 12], [14, 13],
                [15, 0], [16, 0], [17, 15], [18, 16], [19, 14], [20, 19],
                [21, 14], [22, 11], [23, 22], [24, 11]],
    'color': [
        'k', 'r', 'r', 'r', 'b', 'b', 'b', 'k', 'r', 'r', 'r', 'b', 'b', 'b',
        'y', 'y', 'y', 'y', 'b', 'b', 'b', 'r', 'r', 'r'
    ]
}


def plotSkel3D(pts,
               config=kintree,
               ax=None,
               phi=0,
               theta=0,
               max_range=1,
               linewidth=4,
               color=None):
    multi = False
    if torch.is_tensor(pts):
        if len(pts.shape) == 3:
            print(">>> Visualize multiperson ...")
            multi = True
            if pts.shape[1] != 3:
                pts = pts.transpose(1, 2)
        elif len(pts.shape) == 2:
            if pts.shape[0] != 3:
                pts = pts.transpose(0, 1)
        else:
            raise RuntimeError('The dimension of the points is wrong!')
        pts = pts.detach().cpu().numpy()
    else:
        if pts.shape[0] != 3:
            pts = pts.T
    # pts : bn, 3, NumOfPoints or (3, N)
    if ax is None:
        print('>>> create figure ...')
        fig = plt.figure(figsize=[5, 5])
        ax = fig.add_subplot(111, projection='3d')
    for idx, (i, j) in enumerate(config['kintree']):
        if multi:
            for b in range(pts.shape[0]):
                ax.plot([pts[b][0][i], pts[b][0][j]],
                        [pts[b][1][i], pts[b][1][j]],
                        [pts[b][2][i], pts[b][2][j]],
                        lw=linewidth,
                        color=config['color'][idx] if color is None else color,
                        alpha=1)
        else:
            ax.plot([pts[0][i], pts[0][j]], [pts[1][i], pts[1][j]],
                    [pts[2][i], pts[2][j]],
                    lw=linewidth,
                    color=config['color'][idx],
                    alpha=1)
    if multi:
        for b in range(pts.shape[0]):
            ax.scatter(pts[b][0], pts[b][1], pts[b][2], color='r', alpha=1)
    else:
        ax.scatter(pts[0], pts[1], pts[2], color='r', alpha=1, s=0.5)
    ax.view_init(phi, theta)
    ax.set_xlim(-max_range, max_range)
    ax.set_ylim(-max_range, max_range)
    ax.set_zlim(-0.05, 2)

    # ax.axis('equal')
    plt.xlabel('x')
    plt.ylabel('y')
    # plt.zlabel('z')
    return ax


def plotSkel2D(pts,
               config=kintree,
               ax=None,
               linewidth=2,
               alpha=1,
               max_range=1,
               imgshape=None,
               thres=0.1):
    if len(pts.shape) == 2:
        pts = pts[None, :, :]  #(nP, nJ, 2/3)
    elif len(pts.shape) == 3:
        pass
    else:
        raise RuntimeError('The dimension of the points is wrong!')
    if torch.is_tensor(pts):
        pts = pts.detach().cpu().numpy()
    if pts.shape[2] == 3 or pts.shape[2] == 2:
        pts = pts.transpose((0, 2, 1))
    # pts : bn, 2/3, NumOfPoints or (2/3, N)
    if ax is None:
        fig = plt.figure(figsize=[5, 5])
        ax = fig.add_subplot(111)
    if 'color' in config.keys():
        colors = config['color']
    else:
        colors = ['b' for _ in range(len(config['kintree']))]

    def inrange(imgshape, pts):
        if pts[0] < 5 or \
           pts[0] > imgshape[1] - 5 or \
           pts[1] < 5 or \
           pts[1] > imgshape[0] - 5:
            return False
        else:
            return True

    for nP in range(pts.shape[0]):
        for idx, (i, j) in enumerate(config['kintree']):
            if pts.shape[1] == 3:  # with confidence
                if np.min(pts[nP][2][[i, j]]) < thres:
                    continue
                lw = linewidth * 2 * np.min(pts[nP][2][[i, j]])
            else:
                lw = linewidth
            if imgshape is not None:
                if inrange(imgshape, pts[nP, :, i]) and \
                    inrange(imgshape, pts[nP, :, j]):
                    pass
                else:
                    continue
            ax.plot([pts[nP][0][i], pts[nP][0][j]],
                    [pts[nP][1][i], pts[nP][1][j]],
                    lw=lw,
                    color=colors[idx],
                    alpha=1)
        # if pts.shape[1] > 2:
        # ax.scatter(pts[nP][0], pts[nP][1], s=10*(pts[nP][2]-thres), c='r')
    if False:
        ax.axis('equal')
        plt.xlabel('x')
        plt.ylabel('y')
    else:
        ax.axis('off')
    return ax


def draw_skeleton(img, kpts2d):
    cv_img = img.copy()
    for kp in kpts2d:
        if kp.shape[-1] == 2 or (kp.shape[-1] == 3 and kp[-1] > 0):
            cv_img = cv2.circle(cv_img, tuple(kp[:2].astype(int)), 10,
                                (255, 0, 0))
    return cv_img


def vis_frame(data_root, im_data, camera):
    from external.SMPL_CPP.build.python import pysmplceres
    from .smpl_renderer import Renderer

    imgs = [
        cv2.imread(os.path.join(data_root, im_path))
        for im_path in im_data['ims']
    ]
    imgs = [cv2.resize(img, (1024, 1024)) for img in imgs]

    Ks = np.array(camera['K'])
    Rs = np.array(camera['R'])
    Ts = np.array(camera['T']).transpose(0, 2, 1) / 1000

    faces = np.loadtxt('data/smpl/faces.txt').astype(np.int32)
    render = Renderer(height=1024, width=1024, faces=faces)
    vertices = pysmplceres.getVertices(im_data['smpl_result'])

    imgsrender = render.render_multiview(vertices[0], Ks, Rs, Ts, imgs)
    for img in imgsrender:
        plt.imshow(img[..., ::-1])
        plt.show()


def vis_skeleton_frame(data_root, im_data, camera):
    from external.SMPL_CPP.build.python import pysmplceres
    from .smpl_renderer import Renderer

    imgs = [
        cv2.imread(os.path.join(data_root, im_path))
        for im_path in im_data['ims']
    ]
    imgs = [cv2.resize(img, (1024, 1024)) for img in imgs]
    kpts2d = np.array(im_data['kpts2d'])

    for img, kpts in zip(imgs, kpts2d):
        _, ax = plt.subplots(1, 1)
        ax.imshow(img[..., ::-1])
        plotSkel2D(kpts, ax=ax)
        plt.show()


def vis_bbox(img, corners_2d, coord):
    _, ax = plt.subplots(1)
    ax.imshow(img)
    ax.add_patch(
        patches.Polygon(xy=corners_2d[[0, 1, 3, 2, 0, 4, 6, 2]],
                        fill=False,
                        linewidth=1,
                        edgecolor='g'))
    ax.add_patch(
        patches.Polygon(xy=corners_2d[[5, 4, 6, 7, 5, 1, 3, 7]],
                        fill=False,
                        linewidth=1,
                        edgecolor='g'))
    ax.plot(coord[:, 1], coord[:, 0], '.')
    plt.show()


def tsne_colors(data):
    """
    N x D np.array data
    """
    tsne = TSNE(n_components=1,
                verbose=1,
                perplexity=40,
                n_iter=300,
                random_state=0)
    tsne_results = tsne.fit_transform(data)
    tsne_results = np.squeeze(tsne_results)
    tsne_min = np.min(tsne_results)
    tsne_max = np.max(tsne_results)
    tsne_results = (tsne_results - tsne_min) / (tsne_max - tsne_min)
    colors = plt.cm.Spectral(tsne_results)[:, :3]
    return colors


def get_colored_pc(pts, rgb):
    pc = o3d.geometry.PointCloud()
    pc.points = o3d.utility.Vector3dVector(pts)
    colors = np.zeros_like(pts)
    colors += rgb
    pc.colors = o3d.utility.Vector3dVector(colors)
    return pc