File size: 11,058 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Supplementary Material

## Training and test data

We provide a [website](https://zju3dv.github.io/zju_mocap/) for visualization. 

The multi-view videos are captured by 23 cameras. We train our model on the "0, 6, 12, 18" cameras and test it on the remaining cameras.

The following table shows the detailed frame numbers for training and test of each video. Since the video length of each subject is different, we choose the appropriate number of frames for training and test. 

**Note that since rendering is very slow, we test our model every 30 frames. For example, although the frame range of video 313 is "0-59", we only test our model on the 0-th and 30-th frames.**

| Video   |  313  |  315  |  377  |  386  |  387  |  390  |  392  |  393  |  394  | 
| :-----: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of frames  | 1470  | 2185  | 617   |  646  | 654   | 1171  | 556   | 658   | 859   |
| Frame Range (Training) | 0-59    |  0-399  |  0-299  |  0-299  |  0-299  |  700-999  |  0-299  |  0-299  |  0-299  |
| Frame Range (Unseen human poses)  | 60-1060    |  400-1400  |  300-617  |  300-646  |  300-654  |  0-700  |  300-556  |  300-658  |  300-859  |

## Evaluation metrics

**We save our rendering results on novel views of training frames and unseen human poses at [here](https://zjueducn-my.sharepoint.com/:u:/g/personal/pengsida_zju_edu_cn/Ea3VOUy204VAiVJ-V-OGd9YBxdhbtfpS-U6icD_rDq0mUQ?e=cAcylK).**

As described in the paper, we evaluate our model in terms of the PSNR and SSIM metrics.

A straightforward way for evaluation is calculating the metrics on the whole image. Since we already know the 3D bounding box of the target human, we can project the 3D box to obtain a `bound_mask` and make the colors of pixels outside the mask as zero, as shown in the following figure.

![fig](https://zju3dv.github.io/neuralbody/images/bound_mask.png)

As a result, the PSNR and SSIM metrics appear very high performances, as shown in the following table.

<table style="text-align: center">
   <tr>
      <td></td>
      <td colspan="2">Training frames</td>
      <td colspan="2">Unseen human poses</td>
   </tr>
   <tr>
      <td></td>
      <td>PSNR</td>
      <td>SSIM</td>
      <td>PSNR</td>
      <td>SSIM</td>
   </tr>
   <tr>
      <td>313</td>
      <td>35.21 </td>
      <td>0.985 </td>
      <td>29.02 </td>
      <td>0.964 </td>
   </tr>
   <tr>
      <td>315</td>
      <td>33.07 </td>
      <td>0.988 </td>
      <td>25.70 </td>
      <td>0.957 </td>
   </tr>
   <tr>
      <td>392</td>
      <td>35.76 </td>
      <td>0.984 </td>
      <td>31.53 </td>
      <td>0.971 </td>
   </tr>
   <tr>
      <td>393</td>
      <td>33.24 </td>
      <td>0.979 </td>
      <td>28.40 </td>
      <td>0.960 </td>
   </tr>
   <tr>
      <td>394</td>
      <td>34.31 </td>
      <td>0.980 </td>
      <td>29.61 </td>
      <td>0.961 </td>
   </tr>
   <tr>
      <td>377</td>
      <td>33.86 </td>
      <td>0.985 </td>
      <td>30.60 </td>
      <td>0.977 </td>
   </tr>
   <tr>
      <td>386</td>
      <td>36.07 </td>
      <td>0.984 </td>
      <td>33.05 </td>
      <td>0.974 </td>
   </tr>
   <tr>
      <td>390</td>
      <td>34.48 </td>
      <td>0.980 </td>
      <td>30.25 </td>
      <td>0.964 </td>
   </tr>
   <tr>
      <td>387</td>
      <td>31.39 </td>
      <td>0.975 </td>
      <td>27.68 </td>
      <td>0.961 </td>
   </tr>
   <tr>
      <td></td>
      <td>34.15 </td>
      <td>0.982 </td>
      <td>29.54 </td>
      <td>0.966 </td>
   </tr>
</table>

To overcome this problem, a solution is only calculating the metrics on pixels inside the `bound_mask`. Since the SSIM metric requires the input to have the image format, we first compute the 2D box that bounds the `bound_mask` and then crop the corresponding image region. 

```python
def ssim_metric(rgb_pred, rgb_gt, batch):
    mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy()
    H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio)
    mask_at_box = mask_at_box.reshape(H, W)
    # convert the pixels into an image
    img_pred = np.zeros((H, W, 3))
    img_pred[mask_at_box] = rgb_pred
    img_gt = np.zeros((H, W, 3))
    img_gt[mask_at_box] = rgb_gt
    # crop the object region
    x, y, w, h = cv2.boundingRect(mask_at_box.astype(np.uint8))
    img_pred = img_pred[y:y + h, x:x + w]
    img_gt = img_gt[y:y + h, x:x + w]
    # compute the ssim
    ssim = compare_ssim(img_pred, img_gt, multichannel=True)
    return ssim
```


The following table lists corresponding results.

<table style="text-align: center">
   <tr>
      <td></td>
      <td colspan="2">Training frames</td>
      <td colspan="2">Unseen human poses</td>
   </tr>
   <tr>
      <td></td>
      <td>PSNR</td>
      <td>SSIM</td>
      <td>PSNR</td>
      <td>SSIM</td>
   </tr>
   <tr>
      <td>313</td>
      <td>30.56 </td>
      <td>0.971 </td>
      <td>23.95 </td>
      <td>0.905 </td>
   </tr>
   <tr>
      <td>315</td>
      <td>27.24 </td>
      <td>0.962 </td>
      <td>19.56 </td>
      <td>0.852 </td>
   </tr>
   <tr>
      <td>392</td>
      <td>29.44 </td>
      <td>0.946 </td>
      <td>25.76 </td>
      <td>0.909 </td>
   </tr>
   <tr>
      <td>394</td>
      <td>28.44 </td>
      <td>0.940 </td>
      <td>23.80 </td>
      <td>0.878 </td>
   </tr>
   <tr>
      <td>393</td>
      <td>27.58 </td>
      <td>0.939 </td>
      <td>23.25 </td>
      <td>0.893 </td>
   </tr>
   <tr>
      <td>377</td>
      <td>27.64 </td>
      <td>0.951 </td>
      <td>23.91 </td>
      <td>0.909 </td>
   </tr>
   <tr>
      <td>386</td>
      <td>28.60 </td>
      <td>0.931 </td>
      <td>25.68 </td>
      <td>0.881 </td>
   </tr>
   <tr>
      <td>387</td>
      <td>25.79 </td>
      <td>0.928 </td>
      <td>21.60 </td>
      <td>0.870 </td>
   </tr>
   <tr>
      <td>390</td>
      <td>27.59 </td>
      <td>0.926 </td>
      <td>23.90 </td>
      <td>0.870 </td>
   </tr>
   <tr>
      <td></td>
      <td>28.10 </td>
      <td>0.944 </td>
      <td>23.49 </td>
      <td>0.885 </td>
   </tr>
</table>

## Results of other methods on ZJU-MoCap

We save rendering results of other methods on novel views of training frames and unseen human poses at [here](https://zjueducn-my.sharepoint.com/:u:/g/personal/pengsida_zju_edu_cn/EQaPRQww70NDqEXeSG-fOeAB5JXFSWiWDW223h5nmkHvwQ?e=mdofbl), including Neural Volumes, Multi-view Neural Human Rendering, and Deferred Neural Human Rendering. **Note that we only generate novel views of training frames for Neural Volumes.**

The following table lists quantitative results of Neural Volumes.

<table style="text-align: center">
    <tr>
        <td></td>
        <td>PSNR</td>
        <td>SSIM</td>
    </tr>
    <tr>
        <td>313</td>
        <td>20.09 </td>
        <td>0.831 </td>
    </tr>
    <tr>
        <td>315</td>
        <td>18.57 </td>
        <td>0.824 </td>
    </tr>
    <tr>
        <td>392</td>
        <td>22.88 </td>
        <td>0.726 </td>
    </tr>
    <tr>
        <td>394</td>
        <td>22.08 </td>
        <td>0.843 </td>
    </tr>
    <tr>
        <td>393</td>
        <td>21.29 </td>
        <td>0.842 </td>
    </tr>
    <tr>
        <td>377</td>
        <td>21.15 </td>
        <td>0.842 </td>
    </tr>
    <tr>
        <td>386</td>
        <td>23.21 </td>
        <td>0.820 </td>
    </tr>
    <tr>
        <td>387</td>
        <td>20.74 </td>
        <td>0.838 </td>
    </tr>
    <tr>
        <td>390</td>
        <td>22.49 </td>
        <td>0.825 </td>
    </tr>
    <tr>
        <td></td>
        <td>21.39 </td>
        <td>0.821 </td>
    </tr>
</table>

The following table lists quantitative results of Multi-view Neural Human Rendering.

<table style="text-align: center">
    <tr>
        <td></td>
        <td colspan="2">Training frames</td>
        <td colspan="2">Unseen human poses</td>
    </tr>
    <tr>
        <td></td>
        <td>PSNR</td>
        <td>SSIM</td>
        <td>PSNR</td>
        <td>SSIM</td>
    </tr>
    <tr>
        <td>313</td>
        <td>26.68 </td>
        <td>0.935 </td>
        <td>23.05 </td>
        <td>0.893 </td>
    </tr>
    <tr>
        <td>315</td>
        <td>19.81 </td>
        <td>0.874 </td>
        <td>18.88 </td>
        <td>0.844 </td>
    </tr>
    <tr>
        <td>392</td>
        <td>24.73 </td>
        <td>0.902 </td>
        <td>23.66 </td>
        <td>0.893 </td>
    </tr>
    <tr>
        <td>394</td>
        <td>25.01 </td>
        <td>0.906 </td>
        <td>22.87 </td>
        <td>0.874 </td>
    </tr>
    <tr>
        <td>393</td>
        <td>23.47 </td>
        <td>0.894 </td>
        <td>22.27 </td>
        <td>0.885 </td>
    </tr>
    <tr>
        <td>377</td>
        <td>23.79 </td>
        <td>0.918 </td>
        <td>21.94 </td>
        <td>0.885 </td>
    </tr>
    <tr>
        <td>386</td>
        <td>25.02 </td>
        <td>0.879 </td>
        <td>23.70 </td>
        <td>0.853 </td>
    </tr>
    <tr>
        <td>387</td>
        <td>22.65 </td>
        <td>0.858 </td>
        <td>20.97 </td>
        <td>0.866 </td>
    </tr>
    <tr>
        <td>390</td>
        <td>23.72 </td>
        <td>0.873 </td>
        <td>22.65 </td>
        <td>0.858 </td>
    </tr>
    <tr>
        <td></td>
        <td>23.87 </td>
        <td>0.893 </td>
        <td>22.22 </td>
        <td>0.872 </td>
    </tr>
</table>

The following table lists quantitative results of Deferred Neural Human Rendering.

<table style="text-align: center">
    <tr>
        <td></td>
        <td colspan="2">Training frames</td>
        <td colspan="2">Unseen human poses</td>
    </tr>
    <tr>
        <td></td>
        <td>PSNR</td>
        <td>SSIM</td>
        <td>PSNR</td>
        <td>SSIM</td>
    </tr>
    <tr>
        <td>313</td>
        <td>25.78 </td>
        <td>0.929 </td>
        <td>22.56 </td>
        <td>0.889 </td>
    </tr>
    <tr>
        <td>315</td>
        <td>19.44 </td>
        <td>0.869 </td>
        <td>18.38 </td>
        <td>0.841 </td>
    </tr>
    <tr>
        <td>392</td>
        <td>24.96 </td>
        <td>0.905 </td>
        <td>24.08 </td>
        <td>0.900 </td>
    </tr>
    <tr>
        <td>394</td>
        <td>24.84 </td>
        <td>0.903 </td>
        <td>22.67 </td>
        <td>0.871 </td>
    </tr>
    <tr>
        <td>393</td>
        <td>23.50 </td>
        <td>0.896 </td>
        <td>22.45 </td>
        <td>0.888 </td>
    </tr>
    <tr>
        <td>377</td>
        <td>23.74 </td>
        <td>0.917 </td>
        <td>22.07 </td>
        <td>0.886 </td>
    </tr>
    <tr>
        <td>386</td>
        <td>24.93 </td>
        <td>0.877 </td>
        <td>23.70 </td>
        <td>0.851 </td>
    </tr>
    <tr>
        <td>387</td>
        <td>22.44 </td>
        <td>0.888 </td>
        <td>20.64 </td>
        <td>0.862 </td>
    </tr>
    <tr>
        <td>390</td>
        <td>24.33 </td>
        <td>0.881 </td>
        <td>22.90 </td>
        <td>0.864 </td>
    </tr>
    <tr>
        <td></td>
        <td>23.77 </td>
        <td>0.896 </td>
        <td>22.16 </td>
        <td>0.872 </td>
    </tr>
</table>