File size: 5,142 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import math
import numpy as np
import sys
import os

from render.camera import Camera
from render.color_render import ColorRender
import trimesh

import cv2
import os
import argparse
from termcolor import colored

width = 512
height = 512


def normalize_v3(arr):
    ''' Normalize a numpy array of 3 component vectors shape=(n,3) '''
    lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2)
    eps = 0.00000001
    lens[lens < eps] = eps
    arr[:, 0] /= lens
    arr[:, 1] /= lens
    arr[:, 2] /= lens
    return arr


def compute_normal(vertices, faces):
    # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal
    norm = np.zeros(vertices.shape, dtype=vertices.dtype)
    # Create an indexed view into the vertex array using the array of three indices for triangles
    tris = vertices[faces]
    # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle
    n = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0])
    # n is now an array of normals per triangle. The length of each normal is dependent the vertices,
    # we need to normalize these, so that our next step weights each normal equally.
    normalize_v3(n)
    # now we have a normalized array of normals, one per triangle, i.e., per triangle normals.
    # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle,
    # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards.
    # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array
    norm[faces[:, 0]] += n
    norm[faces[:, 1]] += n
    norm[faces[:, 2]] += n
    normalize_v3(norm)

    return norm


def make_rotate(rx, ry, rz):

    sinX = np.sin(rx)
    sinY = np.sin(ry)
    sinZ = np.sin(rz)

    cosX = np.cos(rx)
    cosY = np.cos(ry)
    cosZ = np.cos(rz)

    Rx = np.zeros((3, 3))
    Rx[0, 0] = 1.0
    Rx[1, 1] = cosX
    Rx[1, 2] = -sinX
    Rx[2, 1] = sinX
    Rx[2, 2] = cosX

    Ry = np.zeros((3, 3))
    Ry[0, 0] = cosY
    Ry[0, 2] = sinY
    Ry[1, 1] = 1.0
    Ry[2, 0] = -sinY
    Ry[2, 2] = cosY

    Rz = np.zeros((3, 3))
    Rz[0, 0] = cosZ
    Rz[0, 1] = -sinZ
    Rz[1, 0] = sinZ
    Rz[1, 1] = cosZ
    Rz[2, 2] = 1.0

    R = np.matmul(np.matmul(Rz, Ry), Rx)
    return R


parser = argparse.ArgumentParser()
parser.add_argument('-ww', '--width', type=int, default=512)
parser.add_argument('-hh', '--height', type=int, default=512)
parser.add_argument('--exp_name', type=str)
parser.add_argument('--dataset', type=str)
parser.add_argument('--mesh_ind', type=int, default=0)

args = parser.parse_args()

renderer = ColorRender(width=args.width, height=args.height)
cam = Camera(width=1.0, height=args.height / args.width)
cam.ortho_ratio = 1.2
cam.near = -100
cam.far = 10

data_root = 'data/result/if_nerf/{}/mesh'.format(
    args.exp_name)
obj_path = os.path.join(data_root, '{:04d}.ply'.format(args.mesh_ind))

mesh_render_dir = os.path.join(data_root, 'mesh{}_render'.format(args.mesh_ind))

os.system('mkdir -p {}'.format(mesh_render_dir))
obj_files = [obj_path]

if args.dataset == 'zju_mocap':
    R = make_rotate(0, math.radians(0), 0)  # zju-mocap
else:
    R = make_rotate(0, math.radians(90), math.radians(90))  # people-snapshot

print(colored('the results are saved at {}'.format(mesh_render_dir), 'yellow'))

for i, obj_path in enumerate(obj_files):

    print(obj_path)
    obj_file = obj_path.split('/')[-1]
    file_name = obj_file[:-4]

    if not os.path.exists(obj_path):
        continue
    mesh = trimesh.load(obj_path)
    vertices = mesh.vertices
    faces = mesh.faces

    rot = np.array([[1, 0, 0], [0, 0, 1], [0, -1, 0]])
    vertices = np.dot(vertices, rot.T)
    mesh.vertices = vertices

    vertices = np.matmul(vertices, R.T)
    bbox_max = vertices.max(0)
    bbox_min = vertices.min(0)

    # notice that original scale is discarded to render with the same size
    vertices -= 0.5 * (bbox_max + bbox_min)[None, :]
    vertices /= bbox_max[1] - bbox_min[1]

    normals = compute_normal(vertices, faces)

    renderer.set_mesh(vertices, faces, 0.5 * normals + 0.5, faces)

    self_rot = make_rotate(i, math.radians(-90), 0)
    vertices = np.matmul(vertices, self_rot.T)
    cnt = 0
    for j in range(0, 361, 4):
        cam.center = np.array([0, 0, 0])
        cam.eye = np.array([
            2.0 * math.sin(math.radians(0)), 0, 2.0 * math.cos(math.radians(0))
        ]) + cam.center

        self_rot = make_rotate(i, math.radians(-4), 0)
        vertices = np.matmul(vertices, self_rot.T)
        normals = compute_normal(vertices, faces)

        renderer.set_mesh(vertices, faces, 0.5 * normals + 0.5, faces)
        renderer.set_camera(cam)
        renderer.display()

        img = renderer.get_color(0)
        img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA)
        img = img[..., :3]

        cv2.imwrite(os.path.join(mesh_render_dir, '%d.jpg' % cnt), 255 * img)
        cnt += 1