Spaces:
Configuration error
Configuration error
from bisect import bisect_right | |
from collections import Counter | |
import torch | |
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler): | |
def __init__( | |
self, | |
optimizer, | |
milestones, | |
gamma=0.1, | |
warmup_factor=1.0 / 3, | |
warmup_iters=5, | |
warmup_method="linear", | |
last_epoch=-1, | |
): | |
if not list(milestones) == sorted(milestones): | |
raise ValueError( | |
"Milestones should be a list of" " increasing integers. Got {}", | |
milestones, | |
) | |
if warmup_method not in ("constant", "linear"): | |
raise ValueError( | |
"Only 'constant' or 'linear' warmup_method accepted" | |
"got {}".format(warmup_method) | |
) | |
self.milestones = milestones | |
self.gamma = gamma | |
self.warmup_factor = warmup_factor | |
self.warmup_iters = warmup_iters | |
self.warmup_method = warmup_method | |
super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
warmup_factor = 1 | |
if self.last_epoch < self.warmup_iters: | |
if self.warmup_method == "constant": | |
warmup_factor = self.warmup_factor | |
elif self.warmup_method == "linear": | |
alpha = float(self.last_epoch) / self.warmup_iters | |
warmup_factor = self.warmup_factor * (1 - alpha) + alpha | |
return [ | |
base_lr | |
* warmup_factor | |
* self.gamma ** bisect_right(self.milestones, self.last_epoch) | |
for base_lr in self.base_lrs | |
] | |
class MultiStepLR(torch.optim.lr_scheduler._LRScheduler): | |
def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1): | |
self.milestones = Counter(milestones) | |
self.gamma = gamma | |
super(MultiStepLR, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
if self.last_epoch not in self.milestones: | |
return [group['lr'] for group in self.optimizer.param_groups] | |
return [group['lr'] * self.gamma ** self.milestones[self.last_epoch] | |
for group in self.optimizer.param_groups] | |
class ExponentialLR(torch.optim.lr_scheduler._LRScheduler): | |
def __init__(self, optimizer, decay_epochs, gamma=0.1, last_epoch=-1): | |
self.decay_epochs = decay_epochs | |
self.gamma = gamma | |
super(ExponentialLR, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
return [base_lr * self.gamma ** (self.last_epoch / self.decay_epochs) | |
for base_lr in self.base_lrs] | |