NeuralBody / lib /utils /optimizer /lr_scheduler.py
pengsida
initial commit
1ba539f
raw
history blame
2.59 kB
from bisect import bisect_right
from collections import Counter
import torch
class WarmupMultiStepLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
optimizer,
milestones,
gamma=0.1,
warmup_factor=1.0 / 3,
warmup_iters=5,
warmup_method="linear",
last_epoch=-1,
):
if not list(milestones) == sorted(milestones):
raise ValueError(
"Milestones should be a list of" " increasing integers. Got {}",
milestones,
)
if warmup_method not in ("constant", "linear"):
raise ValueError(
"Only 'constant' or 'linear' warmup_method accepted"
"got {}".format(warmup_method)
)
self.milestones = milestones
self.gamma = gamma
self.warmup_factor = warmup_factor
self.warmup_iters = warmup_iters
self.warmup_method = warmup_method
super(WarmupMultiStepLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
warmup_factor = 1
if self.last_epoch < self.warmup_iters:
if self.warmup_method == "constant":
warmup_factor = self.warmup_factor
elif self.warmup_method == "linear":
alpha = float(self.last_epoch) / self.warmup_iters
warmup_factor = self.warmup_factor * (1 - alpha) + alpha
return [
base_lr
* warmup_factor
* self.gamma ** bisect_right(self.milestones, self.last_epoch)
for base_lr in self.base_lrs
]
class MultiStepLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1):
self.milestones = Counter(milestones)
self.gamma = gamma
super(MultiStepLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch not in self.milestones:
return [group['lr'] for group in self.optimizer.param_groups]
return [group['lr'] * self.gamma ** self.milestones[self.last_epoch]
for group in self.optimizer.param_groups]
class ExponentialLR(torch.optim.lr_scheduler._LRScheduler):
def __init__(self, optimizer, decay_epochs, gamma=0.1, last_epoch=-1):
self.decay_epochs = decay_epochs
self.gamma = gamma
super(ExponentialLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
return [base_lr * self.gamma ** (self.last_epoch / self.decay_epochs)
for base_lr in self.base_lrs]