NeuralBody / configs /neural_volumes /neural_volumes_393.yaml
pengsida
initial commit
1ba539f
task: 'if_nerf'
gpus: [0]
train_dataset_module: 'lib.datasets.light_stage.can_smpl'
train_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
test_dataset_module: 'lib.datasets.light_stage.can_smpl'
test_dataset_path: 'lib/datasets/light_stage/can_smpl.py'
network_module: 'lib.networks.latent_xyzc'
network_path: 'lib/networks/latent_xyzc.py'
renderer_module: 'lib.networks.renderer.if_clight_renderer'
renderer_path: 'lib/networks/renderer/if_clight_renderer.py'
trainer_module: 'lib.train.trainers.if_nerf_clight'
trainer_path: 'lib/train/trainers/if_nerf_clight.py'
evaluator_module: 'lib.evaluators.neural_volume'
evaluator_path: 'lib/evaluators/neural_volume.py'
visualizer_module: 'lib.visualizers.if_nerf'
visualizer_path: 'lib/visualizers/if_nerf.py'
human: 393
train:
dataset: Human393_0001_Train
batch_size: 1
collator: ''
lr: 5e-4
weight_decay: 0
epoch: 400
scheduler:
type: 'exponential'
gamma: 0.1
decay_epochs: 1000
num_workers: 16
test:
dataset: Human393_0001_Test
sampler: 'FrameSampler'
batch_size: 1
collator: ''
ep_iter: 500
save_ep: 1000
eval_ep: 1000
# training options
netdepth: 8
netwidth: 256
netdepth_fine: 8
netwidth_fine: 256
netchunk: 65536
chunk: 32768
no_batching: True
precrop_iters: 500
precrop_frac: 0.5
# network options
point_feature: 6
# rendering options
use_viewdirs: True
i_embed: 0
xyz_res: 10
view_res: 4
raw_noise_std: 0
N_samples: 64
N_importance: 128
N_rand: 1024
near: 1
far: 3
perturb: 1
white_bkgd: False
render_views: 50
# data options
res: 256
ratio: 0.5
intv: 6
ni: 300
smpl: 'smpl'
params: 'params'
voxel_size: [0.005, 0.005, 0.005] # dhw
# record options
log_interval: 1