pengsida
initial commit
1ba539f
import numpy as np
from lib.config import cfg
from skimage.measure import compare_ssim
import os
import cv2
from termcolor import colored
class Evaluator:
def __init__(self):
self.mse = []
self.psnr = []
self.ssim = []
def psnr_metric(self, img_pred, img_gt):
mse = np.mean((img_pred - img_gt)**2)
psnr = -10 * np.log(mse) / np.log(10)
return psnr
def ssim_metric(self, img_pred, img_gt, batch):
if not cfg.eval_whole_img:
mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy()
H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio)
mask_at_box = mask_at_box.reshape(H, W)
# crop the object region
x, y, w, h = cv2.boundingRect(mask_at_box.astype(np.uint8))
img_pred = img_pred[y:y + h, x:x + w]
img_gt = img_gt[y:y + h, x:x + w]
result_dir = os.path.join(cfg.result_dir, 'comparison')
os.system('mkdir -p {}'.format(result_dir))
frame_index = batch['frame_index'].item()
view_index = batch['cam_ind'].item()
cv2.imwrite(
'{}/frame{:04d}_view{:04d}.png'.format(result_dir, frame_index,
view_index),
(img_pred[..., [2, 1, 0]] * 255))
cv2.imwrite(
'{}/frame{:04d}_view{:04d}_gt.png'.format(result_dir, frame_index,
view_index),
(img_gt[..., [2, 1, 0]] * 255))
# compute the ssim
ssim = compare_ssim(img_pred, img_gt, multichannel=True)
return ssim
def evaluate(self, output, batch):
rgb_pred = output['rgb_map'][0].detach().cpu().numpy()
rgb_gt = batch['rgb'][0].detach().cpu().numpy()
mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy()
H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio)
mask_at_box = mask_at_box.reshape(H, W)
# convert the pixels into an image
white_bkgd = int(cfg.white_bkgd)
img_pred = np.zeros((H, W, 3)) + white_bkgd
img_pred[mask_at_box] = rgb_pred
img_gt = np.zeros((H, W, 3)) + white_bkgd
img_gt[mask_at_box] = rgb_gt
if cfg.eval_whole_img:
rgb_pred = img_pred
rgb_gt = img_gt
mse = np.mean((rgb_pred - rgb_gt)**2)
self.mse.append(mse)
psnr = self.psnr_metric(rgb_pred, rgb_gt)
self.psnr.append(psnr)
rgb_pred = img_pred
rgb_gt = img_gt
ssim = self.ssim_metric(rgb_pred, rgb_gt, batch)
self.ssim.append(ssim)
def summarize(self):
result_dir = cfg.result_dir
print(
colored('the results are saved at {}'.format(result_dir),
'yellow'))
result_path = os.path.join(cfg.result_dir, 'metrics.npy')
os.system('mkdir -p {}'.format(os.path.dirname(result_path)))
metrics = {'mse': self.mse, 'psnr': self.psnr, 'ssim': self.ssim}
np.save(result_path, metrics)
print('mse: {}'.format(np.mean(self.mse)))
print('psnr: {}'.format(np.mean(self.psnr)))
print('ssim: {}'.format(np.mean(self.ssim)))
self.mse = []
self.psnr = []
self.ssim = []