Spaces:
Configuration error
Configuration error
import torch.nn as nn | |
import spconv | |
import torch.nn.functional as F | |
import torch | |
from lib.config import cfg | |
from . import embedder | |
class Network(nn.Module): | |
def __init__(self): | |
super(Network, self).__init__() | |
self.c = nn.Embedding(6890, 16) | |
self.xyzc_net = SparseConvNet() | |
self.latent = nn.Embedding(cfg.num_train_frame, 128) | |
self.actvn = nn.ReLU() | |
self.fc_0 = nn.Conv1d(352, 256, 1) | |
self.fc_1 = nn.Conv1d(256, 256, 1) | |
self.fc_2 = nn.Conv1d(256, 256, 1) | |
self.alpha_fc = nn.Conv1d(256, 1, 1) | |
self.feature_fc = nn.Conv1d(256, 256, 1) | |
self.latent_fc = nn.Conv1d(384, 256, 1) | |
self.view_fc = nn.Conv1d(346, 128, 1) | |
self.rgb_fc = nn.Conv1d(128, 3, 1) | |
def encode_sparse_voxels(self, sp_input): | |
coord = sp_input['coord'] | |
out_sh = sp_input['out_sh'] | |
batch_size = sp_input['batch_size'] | |
code = self.c(torch.arange(0, 6890).to(coord.device)) | |
xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size) | |
feature_volume = self.xyzc_net(xyzc) | |
return feature_volume | |
def pts_to_can_pts(self, pts, sp_input): | |
"""transform pts from the world coordinate to the smpl coordinate""" | |
Th = sp_input['Th'] | |
pts = pts - Th | |
R = sp_input['R'] | |
pts = torch.matmul(pts, R) | |
return pts | |
def get_grid_coords(self, pts, sp_input): | |
# convert xyz to the voxel coordinate dhw | |
dhw = pts[..., [2, 1, 0]] | |
min_dhw = sp_input['bounds'][:, 0, [2, 1, 0]] | |
dhw = dhw - min_dhw[:, None] | |
dhw = dhw / torch.tensor(cfg.voxel_size).to(dhw) | |
# convert the voxel coordinate to [-1, 1] | |
out_sh = torch.tensor(sp_input['out_sh']).to(dhw) | |
dhw = dhw / out_sh * 2 - 1 | |
# convert dhw to whd, since the occupancy is indexed by dhw | |
grid_coords = dhw[..., [2, 1, 0]] | |
return grid_coords | |
def interpolate_features(self, grid_coords, feature_volume): | |
features = [] | |
for volume in feature_volume: | |
feature = F.grid_sample(volume, | |
grid_coords, | |
padding_mode='zeros', | |
align_corners=True) | |
features.append(feature) | |
features = torch.cat(features, dim=1) | |
features = features.view(features.size(0), -1, features.size(4)) | |
return features | |
def calculate_density(self, wpts, feature_volume, sp_input): | |
# interpolate features | |
ppts = self.pts_to_can_pts(wpts, sp_input) | |
grid_coords = self.get_grid_coords(ppts, sp_input) | |
grid_coords = grid_coords[:, None, None] | |
xyzc_features = self.interpolate_features(grid_coords, feature_volume) | |
# calculate density | |
net = self.actvn(self.fc_0(xyzc_features)) | |
net = self.actvn(self.fc_1(net)) | |
net = self.actvn(self.fc_2(net)) | |
alpha = self.alpha_fc(net) | |
alpha = alpha.transpose(1, 2) | |
return alpha | |
def calculate_density_color(self, wpts, viewdir, feature_volume, sp_input): | |
# interpolate features | |
ppts = self.pts_to_can_pts(wpts, sp_input) | |
grid_coords = self.get_grid_coords(ppts, sp_input) | |
grid_coords = grid_coords[:, None, None] | |
xyzc_features = self.interpolate_features(grid_coords, feature_volume) | |
# calculate density | |
net = self.actvn(self.fc_0(xyzc_features)) | |
net = self.actvn(self.fc_1(net)) | |
net = self.actvn(self.fc_2(net)) | |
alpha = self.alpha_fc(net) | |
# calculate color | |
features = self.feature_fc(net) | |
latent = self.latent(sp_input['latent_index']) | |
latent = latent[..., None].expand(*latent.shape, net.size(2)) | |
features = torch.cat((features, latent), dim=1) | |
features = self.latent_fc(features) | |
viewdir = embedder.view_embedder(viewdir) | |
viewdir = viewdir.transpose(1, 2) | |
light_pts = embedder.xyz_embedder(wpts) | |
light_pts = light_pts.transpose(1, 2) | |
features = torch.cat((features, viewdir, light_pts), dim=1) | |
net = self.actvn(self.view_fc(features)) | |
rgb = self.rgb_fc(net) | |
raw = torch.cat((rgb, alpha), dim=1) | |
raw = raw.transpose(1, 2) | |
return raw | |
def forward(self, sp_input, grid_coords, viewdir, light_pts): | |
coord = sp_input['coord'] | |
out_sh = sp_input['out_sh'] | |
batch_size = sp_input['batch_size'] | |
p_features = grid_coords.transpose(1, 2) | |
grid_coords = grid_coords[:, None, None] | |
code = self.c(torch.arange(0, 6890).to(p_features.device)) | |
xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size) | |
xyzc_features = self.xyzc_net(xyzc, grid_coords) | |
net = self.actvn(self.fc_0(xyzc_features)) | |
net = self.actvn(self.fc_1(net)) | |
net = self.actvn(self.fc_2(net)) | |
alpha = self.alpha_fc(net) | |
features = self.feature_fc(net) | |
latent = self.latent(sp_input['latent_index']) | |
latent = latent[..., None].expand(*latent.shape, net.size(2)) | |
features = torch.cat((features, latent), dim=1) | |
features = self.latent_fc(features) | |
viewdir = viewdir.transpose(1, 2) | |
light_pts = light_pts.transpose(1, 2) | |
features = torch.cat((features, viewdir, light_pts), dim=1) | |
net = self.actvn(self.view_fc(features)) | |
rgb = self.rgb_fc(net) | |
raw = torch.cat((rgb, alpha), dim=1) | |
raw = raw.transpose(1, 2) | |
return raw | |
class SparseConvNet(nn.Module): | |
def __init__(self): | |
super(SparseConvNet, self).__init__() | |
self.conv0 = double_conv(16, 16, 'subm0') | |
self.down0 = stride_conv(16, 32, 'down0') | |
self.conv1 = double_conv(32, 32, 'subm1') | |
self.down1 = stride_conv(32, 64, 'down1') | |
self.conv2 = triple_conv(64, 64, 'subm2') | |
self.down2 = stride_conv(64, 128, 'down2') | |
self.conv3 = triple_conv(128, 128, 'subm3') | |
self.down3 = stride_conv(128, 128, 'down3') | |
self.conv4 = triple_conv(128, 128, 'subm4') | |
def forward(self, x): | |
net = self.conv0(x) | |
net = self.down0(net) | |
net = self.conv1(net) | |
net1 = net.dense() | |
net = self.down1(net) | |
net = self.conv2(net) | |
net2 = net.dense() | |
net = self.down2(net) | |
net = self.conv3(net) | |
net3 = net.dense() | |
net = self.down3(net) | |
net = self.conv4(net) | |
net4 = net.dense() | |
volumes = [net1, net2, net3, net4] | |
return volumes | |
def single_conv(in_channels, out_channels, indice_key=None): | |
return spconv.SparseSequential( | |
spconv.SubMConv3d(in_channels, | |
out_channels, | |
1, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), | |
nn.ReLU(), | |
) | |
def double_conv(in_channels, out_channels, indice_key=None): | |
return spconv.SparseSequential( | |
spconv.SubMConv3d(in_channels, | |
out_channels, | |
3, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), | |
nn.ReLU(), | |
spconv.SubMConv3d(out_channels, | |
out_channels, | |
3, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), | |
nn.ReLU(), | |
) | |
def triple_conv(in_channels, out_channels, indice_key=None): | |
return spconv.SparseSequential( | |
spconv.SubMConv3d(in_channels, | |
out_channels, | |
3, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), | |
nn.ReLU(), | |
spconv.SubMConv3d(out_channels, | |
out_channels, | |
3, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), | |
nn.ReLU(), | |
spconv.SubMConv3d(out_channels, | |
out_channels, | |
3, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), | |
nn.ReLU(), | |
) | |
def stride_conv(in_channels, out_channels, indice_key=None): | |
return spconv.SparseSequential( | |
spconv.SparseConv3d(in_channels, | |
out_channels, | |
3, | |
2, | |
padding=1, | |
bias=False, | |
indice_key=indice_key), | |
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), nn.ReLU()) | |