NeuralBody / train_net.py
pengsida
initial commit
1ba539f
from lib.config import cfg, args
from lib.networks import make_network
from lib.train import make_trainer, make_optimizer, make_lr_scheduler, make_recorder, set_lr_scheduler
from lib.datasets import make_data_loader
from lib.utils.net_utils import load_model, save_model, load_network
from lib.evaluators import make_evaluator
import torch.multiprocessing
import torch
import torch.distributed as dist
import os
if cfg.fix_random:
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def train(cfg, network):
trainer = make_trainer(cfg, network)
optimizer = make_optimizer(cfg, network)
scheduler = make_lr_scheduler(cfg, optimizer)
recorder = make_recorder(cfg)
evaluator = make_evaluator(cfg)
begin_epoch = load_model(network,
optimizer,
scheduler,
recorder,
cfg.trained_model_dir,
resume=cfg.resume)
set_lr_scheduler(cfg, scheduler)
train_loader = make_data_loader(cfg,
is_train=True,
is_distributed=cfg.distributed,
max_iter=cfg.ep_iter)
val_loader = make_data_loader(cfg, is_train=False)
for epoch in range(begin_epoch, cfg.train.epoch):
recorder.epoch = epoch
if cfg.distributed:
train_loader.batch_sampler.sampler.set_epoch(epoch)
trainer.train(epoch, train_loader, optimizer, recorder)
scheduler.step()
if (epoch + 1) % cfg.save_ep == 0 and cfg.local_rank == 0:
save_model(network, optimizer, scheduler, recorder,
cfg.trained_model_dir, epoch)
if (epoch + 1) % cfg.save_latest_ep == 0 and cfg.local_rank == 0:
save_model(network,
optimizer,
scheduler,
recorder,
cfg.trained_model_dir,
epoch,
last=True)
if (epoch + 1) % cfg.eval_ep == 0:
trainer.val(epoch, val_loader, evaluator, recorder)
return network
def test(cfg, network):
trainer = make_trainer(cfg, network)
val_loader = make_data_loader(cfg, is_train=False)
evaluator = make_evaluator(cfg)
epoch = load_network(network,
cfg.trained_model_dir,
resume=cfg.resume,
epoch=cfg.test.epoch)
trainer.val(epoch, val_loader, evaluator)
def synchronize():
"""
Helper function to synchronize (barrier) among all processes when
using distributed training
"""
if not dist.is_available():
return
if not dist.is_initialized():
return
world_size = dist.get_world_size()
if world_size == 1:
return
dist.barrier()
def main():
if cfg.distributed:
cfg.local_rank = int(os.environ['RANK']) % torch.cuda.device_count()
torch.cuda.set_device(cfg.local_rank)
torch.distributed.init_process_group(backend="nccl",
init_method="env://")
synchronize()
network = make_network(cfg)
if args.test:
test(cfg, network)
else:
train(cfg, network)
if __name__ == "__main__":
main()