Spaces:
Sleeping
Sleeping
File size: 5,861 Bytes
496c763 6c46d60 54a5940 6c46d60 54a5940 6c46d60 496c763 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
from roboflow import Roboflow
import os
import tempfile
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
# Initialize Roboflow
rf = Roboflow(api_key="E5qhgf3ZimDoTx5OfgZ8")
project = rf.workspace().project("newhassae")
def get_model(version):
return project.version(version).model
def preprocess_image(img, version):
# Initial crop for all images
img = img.crop((682, 345, 682+2703, 345+1403))
# Model specific processing
if version == 1:
return img.resize((640, 640))
elif version == 2:
return img
elif version == 3:
width, height = img.size
left = (width - 640) // 2
top = (height - 640) // 2
right = left + 640
bottom = top + 640
return img.crop((left, top, right, bottom))
return img
def process_images(image_files, version):
model = get_model(version)
results = []
if not isinstance(image_files, list):
image_files = [image_files]
for image_file in image_files:
try:
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
temp_file.write(image_file)
temp_path = temp_file.name
img = Image.open(temp_path)
processed_img = preprocess_image(img, version)
processed_temp = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
processed_img.save(processed_temp.name)
try:
prediction = model.predict(processed_temp.name).json()
predicted_class = prediction["predictions"][0]["predictions"][0]["class"]
confidence = f"{float(prediction['predictions'][0]['predictions'][0]['confidence']) * 100:.1f}%"
except Exception as e:
predicted_class = "Error"
confidence = "N/A"
if processed_img.mode != 'RGB':
processed_img = processed_img.convert('RGB')
labeled_img = add_label_to_image(processed_img, predicted_class, confidence)
top_result = {
"predicted_class": predicted_class,
"confidence": confidence
}
results.append((labeled_img, top_result))
except Exception as e:
gr.Warning(f"Error processing image: {str(e)}")
continue
finally:
if 'temp_path' in locals():
os.unlink(temp_path)
if 'processed_temp' in locals():
os.unlink(processed_temp.name)
return results if results else [(Image.new('RGB', (400, 400), 'grey'), {"predicted_class": "Error", "confidence": "N/A"})]
def add_label_to_image(image, prediction, confidence):
# Convert PIL image to OpenCV format
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Image dimensions
img_height, img_width = img_cv.shape[:2]
padding = int(img_width * 0.02)
# Rectangle dimensions
rect_height = int(img_height * 0.15)
rect_width = img_width - (padding * 2)
# Convert confidence percentage string to float
confidence_value = float(confidence.strip('%'))
# Set color based on confidence (BGR format)
rect_color = (0, 255, 0) if confidence_value >= 80 else (0, 0, 255) # Green if >=80%, Red otherwise
# Draw colored rectangle
cv2.rectangle(img_cv,
(padding, padding),
(padding + rect_width, padding + rect_height),
rect_color,
-1)
text = f"{prediction}: {confidence}"
# Text settings
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 3.0
thickness = 8
# Get text size and position
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
text_x = padding + (rect_width - text_width) // 2
text_y = padding + (rect_height + text_height) // 2
# Draw white text
cv2.putText(img_cv, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness)
# Convert back to PIL
img_pil = Image.fromarray(cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB))
return img_pil
def display_results(image_files, version):
results = process_images(image_files, version)
output_images = [res[0] for res in results]
predictions = [res[1] for res in results]
return output_images, predictions
# Create Gradio interface
with gr.Blocks() as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<img src="https://haeab.se/wp-content/uploads/2023/12/ad.png" alt="Logo" style="height: 100px;">
</div>
""")
gr.Markdown("Hans Andersson Entrepenad")
with gr.Row():
with gr.Column():
model_version = gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Model Version",
interactive=True
)
image_input = gr.File(
label="Upload Image(s)",
file_count="multiple",
type="binary"
)
with gr.Column():
image_output = gr.Gallery(label="Processed Images")
text_output = gr.JSON(
label="Top Predictions",
height=400, # Increases height
container=True, # Adds a container around the JSON
show_label=True
)
submit_btn = gr.Button("Analyze Images")
submit_btn.click(
fn=display_results,
inputs=[image_input, model_version],
outputs=[image_output, text_output]
)
demo.launch(share=True, debug=True, show_error=True)
|