hassegradio / app.py
perlarsson's picture
Upload folder using huggingface_hub
54a5940 verified
raw
history blame
5.86 kB
import gradio as gr
from roboflow import Roboflow
import os
import tempfile
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
# Initialize Roboflow
rf = Roboflow(api_key="E5qhgf3ZimDoTx5OfgZ8")
project = rf.workspace().project("newhassae")
def get_model(version):
return project.version(version).model
def preprocess_image(img, version):
# Initial crop for all images
img = img.crop((682, 345, 682+2703, 345+1403))
# Model specific processing
if version == 1:
return img.resize((640, 640))
elif version == 2:
return img
elif version == 3:
width, height = img.size
left = (width - 640) // 2
top = (height - 640) // 2
right = left + 640
bottom = top + 640
return img.crop((left, top, right, bottom))
return img
def process_images(image_files, version):
model = get_model(version)
results = []
if not isinstance(image_files, list):
image_files = [image_files]
for image_file in image_files:
try:
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
temp_file.write(image_file)
temp_path = temp_file.name
img = Image.open(temp_path)
processed_img = preprocess_image(img, version)
processed_temp = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
processed_img.save(processed_temp.name)
try:
prediction = model.predict(processed_temp.name).json()
predicted_class = prediction["predictions"][0]["predictions"][0]["class"]
confidence = f"{float(prediction['predictions'][0]['predictions'][0]['confidence']) * 100:.1f}%"
except Exception as e:
predicted_class = "Error"
confidence = "N/A"
if processed_img.mode != 'RGB':
processed_img = processed_img.convert('RGB')
labeled_img = add_label_to_image(processed_img, predicted_class, confidence)
top_result = {
"predicted_class": predicted_class,
"confidence": confidence
}
results.append((labeled_img, top_result))
except Exception as e:
gr.Warning(f"Error processing image: {str(e)}")
continue
finally:
if 'temp_path' in locals():
os.unlink(temp_path)
if 'processed_temp' in locals():
os.unlink(processed_temp.name)
return results if results else [(Image.new('RGB', (400, 400), 'grey'), {"predicted_class": "Error", "confidence": "N/A"})]
def add_label_to_image(image, prediction, confidence):
# Convert PIL image to OpenCV format
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Image dimensions
img_height, img_width = img_cv.shape[:2]
padding = int(img_width * 0.02)
# Rectangle dimensions
rect_height = int(img_height * 0.15)
rect_width = img_width - (padding * 2)
# Convert confidence percentage string to float
confidence_value = float(confidence.strip('%'))
# Set color based on confidence (BGR format)
rect_color = (0, 255, 0) if confidence_value >= 80 else (0, 0, 255) # Green if >=80%, Red otherwise
# Draw colored rectangle
cv2.rectangle(img_cv,
(padding, padding),
(padding + rect_width, padding + rect_height),
rect_color,
-1)
text = f"{prediction}: {confidence}"
# Text settings
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 3.0
thickness = 8
# Get text size and position
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
text_x = padding + (rect_width - text_width) // 2
text_y = padding + (rect_height + text_height) // 2
# Draw white text
cv2.putText(img_cv, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness)
# Convert back to PIL
img_pil = Image.fromarray(cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB))
return img_pil
def display_results(image_files, version):
results = process_images(image_files, version)
output_images = [res[0] for res in results]
predictions = [res[1] for res in results]
return output_images, predictions
# Create Gradio interface
with gr.Blocks() as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<img src="https://haeab.se/wp-content/uploads/2023/12/ad.png" alt="Logo" style="height: 100px;">
</div>
""")
gr.Markdown("Hans Andersson Entrepenad")
with gr.Row():
with gr.Column():
model_version = gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Model Version",
interactive=True
)
image_input = gr.File(
label="Upload Image(s)",
file_count="multiple",
type="binary"
)
with gr.Column():
image_output = gr.Gallery(label="Processed Images")
text_output = gr.JSON(
label="Top Predictions",
height=400, # Increases height
container=True, # Adds a container around the JSON
show_label=True
)
submit_btn = gr.Button("Analyze Images")
submit_btn.click(
fn=display_results,
inputs=[image_input, model_version],
outputs=[image_output, text_output]
)
demo.launch(share=True, debug=True, show_error=True)