File size: 8,007 Bytes
06ecff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190bb2a
 
06ecff4
1c2fac9
ff4edf1
 
 
 
06ecff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4edf1
06ecff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4edf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ecff4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8306f26
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import speech_recognition as sr
import ollama
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
import traceback
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch
from huggingface_hub import login
import os
tk = token = os.environ.get("HF_TOKEN")
login(tk)
model_id = "meta-llama/Llama-3.2-1B"
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
    torch_dtype=torch.bfloat16).to("cpu")
processor = AutoProcessor.from_pretrained(ckpt)
r = sr.Recognizer()

@dataclass
class AppState:
    stream: np.ndarray | None = None
    sampling_rate: int = 0
    pause_detected: bool = False
    started_talking: bool =  False
    stopped: bool = False
    conversation: list = field(default_factory=list)

def run_vad(ori_audio, sr):
    _st = time.time()
    try:
        audio = ori_audio
        audio = audio.astype(np.float32) / 32768.0
        sampling_rate = 16000
        if sr != sampling_rate:
            audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
        vad_parameters = {}
        vad_parameters = VadOptions(**vad_parameters)
        speech_chunks = get_speech_timestamps(audio, vad_parameters)
        audio = collect_chunks(audio, speech_chunks)
        duration_after_vad = audio.shape[0] / sampling_rate
        if sr != sampling_rate:
            # resample to original sampling rate
            vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
        else:
            vad_audio = audio
        vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
        vad_audio_bytes = vad_audio.tobytes()
        return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
    except Exception as e:
        msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
        print(msg)
        return -1, ori_audio, round(time.time() - _st, 4)

def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
    """Take in the stream, determine if a pause happened"""
    temp_audio = audio
    dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
    duration = len(audio) / sampling_rate
    if dur_vad > 0.5 and not state.started_talking:
        print("started talking")
        state.started_talking = True
        return False
    print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
    return (duration - dur_vad) > 1

def process_audio(audio:tuple, state:AppState):
    if state.stream is None:
        state.stream = audio[1]
        state.sampling_rate = audio[0]
    else:
        state.stream =  np.concatenate((state.stream, audio[1]))
    pause_detected = determine_pause(state.stream, state.sampling_rate, state)
    state.pause_detected = pause_detected
    if state.pause_detected and state.started_talking:
        return gr.Audio(recording=False), state
    return None, state

def response(state:AppState, message, history, max_new_tokens=250):
    if not state.pause_detected and not state.started_talking:
        return None, AppState()
    audio_buffer = BytesIO()
    segment = AudioSegment(
        state.stream.tobytes(),
        frame_rate=state.sampling_rate,
        sample_width=state.stream.dtype.itemsize,
        channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
    )
    segment.export(audio_buffer, format="wav")
    textin = ""
    with sr.AudioFile(audio_buffer) as source:
        audio_data=r.record(source)
        try:
            textin=r.recognize_google(audio_data,language='vi')
        except:
            textin = ""
        state.conversation.append({"role": "user", "content": "Bạn: " + textin})   
    if textin != "":
        print("Đang nghĩ...")
        textout=str(text2text(textin))
        
        
        for i, msg in enumerate(history): 
            if isinstance(msg[0], tuple):
                messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
                messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
                images.append(Image.open(msg[0][0]).convert("RGB"))
            elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
                # messages are already handled
                pass
            elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
                messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
                messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

        # add current message
        if len(message["files"]) == 1:
            if isinstance(message["files"][0], str): # examples
                image = Image.open(message["files"][0]).convert("RGB")
            else: # regular input
                image = Image.open(message["files"][0]["path"]).convert("RGB")
            images.append(image)
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
        else:
            messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})


        texts = processor.apply_chat_template(messages, add_generation_prompt=True)

        if images == []:
            inputs = processor(text=texts, return_tensors="pt").to("cpu")
        else:
            inputs = processor(text=texts, images=images, return_tensors="pt").to("cpu")
        streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
        generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
        generated_text = streamer
    
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
    
        for new_text in streamer:
            buffer += new_text
            generated_text_without_prompt = buffer
            time.sleep(0.01)
            yield buffer

        
        textout = generated_text.replace('*','')
        state.conversation.append({"role": "user", "content": "Trợ lý: " + textout})
    if textout != "":
        print("Đang đọc...")
        mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
        mp3_fp = BytesIO()
        mp3.write_to_fp(mp3_fp)
        srr=mp3_fp.getvalue()
        mp3_fp.close()
        #yield srr, state
    yield srr, AppState(conversation=state.conversation)

def start_recording_user(state: AppState):
    if not state.stopped:
        return gr.Audio(recording=True)

title = "vietnamese by tuphamkts"
description = "A vietnamese text-to-speech demo."

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
        with gr.Column():
            chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
            output_audio = gr.Audio(label="Trợ lý", autoplay=True)
    state = gr.State(value=AppState())

    stream = input_audio.stream(
        process_audio,
        [input_audio, state],
        [input_audio, state],
        stream_every=0.50,
        time_limit=30,
    )
    respond = input_audio.stop_recording(
        response,
        [state],
        [output_audio, state],
    )
    respond.then(lambda s: s.conversation, [state], [chatbot])

    restart = output_audio.stop(
        start_recording_user,
        [state],
        [input_audio],
    )
    cancel = gr.Button("Stop Conversation", variant="stop")
    cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
                [state, input_audio], cancels=[respond, restart])
demo.launch()