Spaces:
Runtime error
Runtime error
File size: 8,007 Bytes
06ecff4 190bb2a 06ecff4 1c2fac9 ff4edf1 06ecff4 ff4edf1 06ecff4 ff4edf1 06ecff4 8306f26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import speech_recognition as sr
import ollama
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
import traceback
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch
from huggingface_hub import login
import os
tk = token = os.environ.get("HF_TOKEN")
login(tk)
model_id = "meta-llama/Llama-3.2-1B"
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cpu")
processor = AutoProcessor.from_pretrained(ckpt)
r = sr.Recognizer()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
conversation: list = field(default_factory=list)
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
temp_audio = audio
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("started talking")
state.started_talking = True
return False
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
return (duration - dur_vad) > 1
def process_audio(audio:tuple, state:AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
return gr.Audio(recording=False), state
return None, state
def response(state:AppState, message, history, max_new_tokens=250):
if not state.pause_detected and not state.started_talking:
return None, AppState()
audio_buffer = BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
textin = ""
with sr.AudioFile(audio_buffer) as source:
audio_data=r.record(source)
try:
textin=r.recognize_google(audio_data,language='vi')
except:
textin = ""
state.conversation.append({"role": "user", "content": "Bạn: " + textin})
if textin != "":
print("Đang nghĩ...")
textout=str(text2text(textin))
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
# messages are already handled
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# add current message
if len(message["files"]) == 1:
if isinstance(message["files"][0], str): # examples
image = Image.open(message["files"][0]).convert("RGB")
else: # regular input
image = Image.open(message["files"][0]["path"]).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if images == []:
inputs = processor(text=texts, return_tensors="pt").to("cpu")
else:
inputs = processor(text=texts, images=images, return_tensors="pt").to("cpu")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = streamer
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer
time.sleep(0.01)
yield buffer
textout = generated_text.replace('*','')
state.conversation.append({"role": "user", "content": "Trợ lý: " + textout})
if textout != "":
print("Đang đọc...")
mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
mp3_fp = BytesIO()
mp3.write_to_fp(mp3_fp)
srr=mp3_fp.getvalue()
mp3_fp.close()
#yield srr, state
yield srr, AppState(conversation=state.conversation)
def start_recording_user(state: AppState):
if not state.stopped:
return gr.Audio(recording=True)
title = "vietnamese by tuphamkts"
description = "A vietnamese text-to-speech demo."
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
output_audio = gr.Audio(label="Trợ lý", autoplay=True)
state = gr.State(value=AppState())
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.50,
time_limit=30,
)
respond = input_audio.stop_recording(
response,
[state],
[output_audio, state],
)
respond.then(lambda s: s.conversation, [state], [chatbot])
restart = output_audio.stop(
start_recording_user,
[state],
[input_audio],
)
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
[state, input_audio], cancels=[respond, restart])
demo.launch() |