Spaces:
Runtime error
Runtime error
File size: 15,489 Bytes
06ecff4 83498a5 67b7ca7 06ecff4 83498a5 67b7ca7 06ecff4 67b7ca7 06ecff4 67b7ca7 06ecff4 83498a5 06ecff4 67b7ca7 06ecff4 adf8038 67b7ca7 e8c9642 67b7ca7 06ecff4 67b7ca7 06ecff4 67b7ca7 06ecff4 67b7ca7 06ecff4 67b7ca7 06ecff4 67b7ca7 adf8038 67b7ca7 ff4edf1 67b7ca7 83498a5 67b7ca7 e6925fa 67b7ca7 adf8038 67b7ca7 ff4edf1 67b7ca7 ff4edf1 67b7ca7 06ecff4 67b7ca7 06ecff4 67b7ca7 e8c9642 67b7ca7 06ecff4 9f4b706 67b7ca7 9f4b706 67b7ca7 06ecff4 67b7ca7 e6925fa 67b7ca7 9f4b706 67b7ca7 06ecff4 e8c9642 67b7ca7 06ecff4 67b7ca7 06ecff4 e8c9642 06ecff4 67b7ca7 06ecff4 67b7ca7 3ceac67 67b7ca7 e8c9642 67b7ca7 e8c9642 06ecff4 67b7ca7 e8c9642 67b7ca7 e8c9642 67b7ca7 e8c9642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import speech_recognition as sr
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from PIL import Image
from ClassPrompt import PromptClass
import render
creator_prompt = PromptClass()
r = sr.Recognizer()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
history: list = field(default_factory=list)
typing: bool = False
painting:bool = False
image_out:Image.Image = None
image_in:Image = None
conversation:list = field(default_factory=list)
recording: bool = False # Thêm thuộc tính recording
pause_threshold: float = 1 # Thêm thuộc tính pause_threshold
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate # Khai báo và tính toán duration_after_vad
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
return -1, ori_audio, round(time.time() - _st, 4)
def determine_pause(audio:np.ndarray,sampling_rate:int,state:AppState) -> bool:
"""Phát hiện tạm dừng trong âm thanh."""
temp_audio = audio
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("started talking")
state.started_talking = True
return False
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
return (duration - dur_vad) > state.pause_threshold # Sử dụng state.pause_threshold
def process_audio(audio:tuple,state:AppState,image:Image):
if state.recording: # Kiểm tra state.stream:
time.sleep(0.1)
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
state.image_in=image
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
state.started_talking = False
state.recording = False
return state, gr.Audio(recording=False)
return state, None
def transcribe_audio(audio_segment):
audio_buffer = BytesIO()
audio_segment.export(audio_buffer, format="wav")
audio_buffer.seek(0)
try:
with sr.AudioFile(audio_buffer) as source:
r.adjust_for_ambient_noise(source)
text = r.recognize_google(r.record(source), language='vi')
return text
except sr.UnknownValueError:
print("Could not understand audio.")
except sr.RequestError as e:
print(f"Could not request results from Google Speech Recognition service; {e}")
return ""
def chat_with_onlinemodel(user_input, state:AppState):
state.history.append({"role": "user", "content": user_input})
response = creator_prompt.chat(provider="SambaNova", model="Meta-Llama-3.1-405B-Instruct", input_text=state.history)
bot_response = response
characters = bot_response.replace("*","")
state.history.append({"role": "assistant", "content": characters})
state.conversation.append({"role": "user", "content":"Bạn: " + user_input})
state.conversation.append({"role": "assistant", "content":"Bot: " + characters})
return characters, state
def synthesize_speech(text):
"""Chuyển đổi text sang giọng nói bằng gTTS."""
try:
mp3 = gTTS(text, tld='com.vn', lang='vi', slow=False)
mp3_fp = BytesIO()
mp3.write_to_fp(mp3_fp)
audio_bytes = mp3_fp.getvalue()
mp3_fp.close()
return audio_bytes # Chỉ trả về audio_bytes
except Exception as e:
print(f"Lỗi tổng hợp giọng nói: {e}")
return None
def response_audio(state:AppState):
"""Xử lý yêu cầu và tạo phản hồi."""
if not state.pause_detected and not state.started_talking:
return state, None
textin=""
audio_segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=1 if state.stream.ndim == 1 else state.stream.shape[1]
)
textin = transcribe_audio(audio_segment)
state.stream = None
if state.typing is False:
txt,state = chuyen_trangthai(textin, state)
if txt == True:
return state, synthesize_speech("chuyển sang trạng thái dùng bàn phím")
if textin != "":
paint=state.painting
state.painting = text_check(textin, state.painting)
if paint != state.painting:
return state, synthesize_speech("Đã chuyển sang chế độ " + ("vẽ" if state.painting else "nói chuyện"))
if state.painting is True:
promptx = prompt_hugingface(textin,"Hugging Face","Qwen/Qwen2.5-72B-Instruct","Medium")
if state.image_in:
img=resize(state.image_in)
else:
img=None
state.image_out = render.generate_images(textin, img)
audio_bytes = synthesize_speech("Bạn thấy tôi vẽ "+textin+" có đẹp không")
return state, audio_bytes
else:
print("Đang nghĩ...")
text_out, state = chat_with_onlinemodel(textin,state)
audio_bytes = synthesize_speech(text_out)
return state, audio_bytes
else:
return state, synthesize_speech("Tôi nghe không rõ") # Trả về thông báo lỗi nếu synthesize_speech thất bại
def response_text(state:AppState,textin,image:Image, prompt, progress=gr.Progress(track_tqdm=True)):
"""Xử lý yêu cầu và tạo phản hồi."""
#state.recording = False # Dừng ghi âm
if state.typing is True:
txt,state = chuyen_trangthai(textin, state)
if txt == False:
return state, synthesize_speech("chuyển sang trạng thái nói")
if textin != "":
paint=state.painting
state.painting = text_check(textin, state.painting)
if paint != state.painting:
return state, synthesize_speech("Đã chuyển sang chế độ " + ("vẽ" if state.painting else "nói chuyện"))
if state.painting is True:
state.conversation.append({"role": "user", "content":"Bạn: " + textin})
#state.image_out = generate_image(textin, image, streng, ckpt,guidance)
if image:
img=resize(image)
else:
img=None
image_out = render.generate_images(textin, img)
state.image_out = image_out
audio_bytes = synthesize_speech("Bạn thấy tôi vẽ "+prompt+" có đẹp không")
return state, audio_bytes
else:
print("Đang nghĩ...")
text_out, state = chat_with_onlinemodel(textin,state=state)
audio_bytes = synthesize_speech(text_out)
return state, audio_bytes
else:
return state, synthesize_speech("Hãy gõ nội dung") # Trả về thông báo lỗi nếu synthesize_speech thất bại
def text_check(textin, painting):
if not painting:
return "sang chế độ vẽ" in textin
return "sang chế độ nói" not in textin
def chuyen_trangthai(textin, state:AppState):
if "muốn nói chuyện" in textin:
state.started_talking = False
state.recording = True
state.stopped=False
state.typing = False
return False, state
elif "dùng bàn phím" in textin:
state.started_talking = False
state.recording = False
state.stopped=True
state.typing = True
return True, state
else:
return state.typing, state
def start_recording_user(state:AppState,progress=gr.Progress(track_tqdm=True)): # Sửa lỗi tại đây
state.stopped = False # Cho phép bắt đầu ghi âm lại nếu đang ở trạng thái recording
state.started_talking = False
state.recording = True
return gr.Audio(recording=True), state
def restart_recording(state:AppState): # Sửa lỗi tại đây
if not state.stopped: # Cho phép bắt đầu ghi âm lại nếu đang ở trạng thái recording
state.started_talking = False
state.recording = True
return gr.Audio(recording=True), state
else:
state.started_talking = False
state.recording = False
return gr.Audio(recording=False), state
def prompt_hugingface(prompt,llm_provider,model,type):
result = creator_prompt.generate(
input_text=prompt,
long_talk=True,
compress=True,
compression_level="hard",
poster=False,
prompt_type=type, # Use the updated prompt_type here
custom_base_prompt="",
provider=llm_provider,
model=model
)
output = result
return output
def resize(img:Image.Image):
height = (img.height // 8) * 8
width = (img.width // 8) * 8
imgre = img.resize((width,height))
return imgre
loaded = ""
steps = 50
def update_model_choices(provider):
provider_models = {
"Hugging Face": [
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3"
],
"SambaNova": [
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
],
}
models = provider_models.get(provider, [])
return gr.Dropdown(choices=models, value=models[0] if models else "")
prompt_types = ["Long", "Short", "Medium", "OnlyObjects", "NoFigure", "Landscape", "Fantasy"]
title = "Chat tiếng việt by tuphamkts"
description = "Muốn vẽ nói: Chuyển sang chế độ vẽ. Muốn chat nói: Chuyển sang chế độ nói. Chế độ gõ: Tôi muốn dùng bàn phím, chế độ nói: Tôi muốn nói chuyện. Ghi chú: Chỉ dừng chương trình khi tôi đang nói (lịch sử chat sẽ bị xóa khi dừng chương trình)."
examples = ["Chuyển sang chế độ vẽ","Chuyển sang chế độ nói"]
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style='text-align: center;'><h1>{title}</h1><p>{description}</p></div>")
with gr.Row():
with gr.Column():
with gr.Column(visible=False) as prompt_visible:
with gr.Row():
llm_provider = gr.Dropdown(choices=["Hugging Face", "SambaNova"], label="Nguồn model", value="Hugging Face")
model = gr.Dropdown(label="Chọn Model", choices=["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3.1-70B-Instruct","mistralai/Mixtral-8x7B-Instruct-v0.1","mistralai/Mistral-7B-Instruct-v0.3"], value="Qwen/Qwen2.5-72B-Instruct")
prompt_type = gr.Dropdown(choices=prompt_types, label="Phong cách", value="Medium", interactive=True)
input_prompt = gr.Textbox(label="Nhập nội dung muốn vẽ",value="Một cô gái", type="text"),
generate_prompt = gr.Button("Tạo Prompt", variant="stop")
with gr.Column(visible=False) as typing_visible:
input_text = gr.Textbox(label="Nhập nội dung trao đổi", type="text"),
submit = gr.Button("Áp dụng", variant="stop")
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
output_audio = gr.Audio(label="Trợ lý", autoplay=True, sources=None,type="numpy")
input_image = gr.Image(label="Hình ảnh của bạn", sources=["upload","clipboard","webcam"], type="pil",visible=True)
with gr.Column(visible=False) as image_visible:
output_image = gr.Image(label="Hình ảnh sau xử lý", sources=None, type="pil",visible=True)
with gr.Column(visible=True) as chatbot_visible:
chatbot = gr.Chatbot(label="Nội dung trò chuyện",type="messages")
state = gr.State(value=AppState())
#state = gr.State(value=AppState(typing=True, painting=True))
startrecord = input_audio.start_recording(
start_recording_user,
[state],
[input_audio, state],
)
stream = input_audio.stream(
process_audio,
[input_audio,state,input_image],
[state,input_audio],
stream_every=1,
time_limit=30,
)
respond = input_audio.stop_recording(
response_audio,
[state],
[state, output_audio],
)
respond.then(lambda s: s.conversation, [state], [chatbot])
respond.then(lambda s: s.image_out, [state], [output_image])
restart = output_audio.stop(
restart_recording,
[state],
[input_audio, state],
)
restart.then(lambda s: gr.update(visible= not s.typing, recording = not s.typing), [state], [input_audio])
restart.then(lambda s: gr.update(visible=s.typing), [state], [typing_visible])
restart.then(lambda s: gr.update(visible=s.painting), [state], [image_visible])
restart.then(lambda s: gr.update(visible=(s.painting and s.typing) if s.painting==True else False), [state], [prompt_visible])
restart.then(lambda s: gr.update(visible= not s.painting), [state], [chatbot_visible])
cancel = gr.Button("Dừng chương trình", variant="stop", interactive=False)
stream.then(lambda s: gr.update(interactive= not s.stopped), [state], [cancel])
cancel.click(
lambda: (AppState(stopped=True, recording=False, started_talking = False), gr.Audio(recording=False), gr.update(interactive=False)),
None,[state, input_audio, cancel],
cancels=[respond, stream, startrecord, restart] # Thêm startrecord và stream vào cancels
)
sub = submit.click(
response_text,
[state, input_text[0], input_image, input_prompt[0]],
[state, output_audio],
)
sub.then(lambda s: s.conversation, [state], [chatbot])
sub.then(lambda s: s.image_out, [state], [output_image])
generator = generate_prompt.click(
prompt_hugingface,
[input_prompt[0],llm_provider,model,prompt_type],
[input_text[0]]
)
llm_provider.change(
update_model_choices,
[llm_provider],
[model]
)
gr.Examples(
examples=examples,
inputs=input_text,
)
if __name__ == "__main__":
demo.launch() |