assistant / app.py
phamngoctukts's picture
Update app.py
ff4edf1 verified
raw
history blame
8.01 kB
import speech_recognition as sr
import ollama
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
import traceback
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch
from huggingface_hub import login
import os
tk = token = os.environ.get("HF_TOKEN")
login(tk)
model_id = "meta-llama/Llama-3.2-1B"
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cpu")
processor = AutoProcessor.from_pretrained(ckpt)
r = sr.Recognizer()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
conversation: list = field(default_factory=list)
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
temp_audio = audio
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("started talking")
state.started_talking = True
return False
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
return (duration - dur_vad) > 1
def process_audio(audio:tuple, state:AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
return gr.Audio(recording=False), state
return None, state
def response(state:AppState, message, history, max_new_tokens=250):
if not state.pause_detected and not state.started_talking:
return None, AppState()
audio_buffer = BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
textin = ""
with sr.AudioFile(audio_buffer) as source:
audio_data=r.record(source)
try:
textin=r.recognize_google(audio_data,language='vi')
except:
textin = ""
state.conversation.append({"role": "user", "content": "Bạn: " + textin})
if textin != "":
print("Đang nghĩ...")
textout=str(text2text(textin))
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
# messages are already handled
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# add current message
if len(message["files"]) == 1:
if isinstance(message["files"][0], str): # examples
image = Image.open(message["files"][0]).convert("RGB")
else: # regular input
image = Image.open(message["files"][0]["path"]).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if images == []:
inputs = processor(text=texts, return_tensors="pt").to("cpu")
else:
inputs = processor(text=texts, images=images, return_tensors="pt").to("cpu")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = streamer
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer
time.sleep(0.01)
yield buffer
textout = generated_text.replace('*','')
state.conversation.append({"role": "user", "content": "Trợ lý: " + textout})
if textout != "":
print("Đang đọc...")
mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
mp3_fp = BytesIO()
mp3.write_to_fp(mp3_fp)
srr=mp3_fp.getvalue()
mp3_fp.close()
#yield srr, state
yield srr, AppState(conversation=state.conversation)
def start_recording_user(state: AppState):
if not state.stopped:
return gr.Audio(recording=True)
title = "vietnamese by tuphamkts"
description = "A vietnamese text-to-speech demo."
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
output_audio = gr.Audio(label="Trợ lý", autoplay=True)
state = gr.State(value=AppState())
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.50,
time_limit=30,
)
respond = input_audio.stop_recording(
response,
[state],
[output_audio, state],
)
respond.then(lambda s: s.conversation, [state], [chatbot])
restart = output_audio.stop(
start_recording_user,
[state],
[input_audio],
)
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
[state, input_audio], cancels=[respond, restart])
demo.launch()