Spaces:
Running
Running
# Standard library imports | |
import datetime | |
import base64 | |
import os | |
import sys | |
# Related third-party imports | |
import streamlit as st | |
from streamlit_elements import elements | |
from google_auth_oauthlib.flow import Flow | |
from googleapiclient.discovery import build | |
from dotenv import load_dotenv | |
import pandas as pd | |
import searchconsole | |
import cohere | |
from sklearn.metrics.pairwise import cosine_similarity | |
import requests | |
import logging | |
from bs4 import BeautifulSoup | |
load_dotenv() | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
stream=sys.stdout # This will ensure the logs are captured by Hugging Face | |
) | |
logger = logging.getLogger(__name__) | |
# Explicitly set Streamlit's logg | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
# Initialize Cohere client | |
COHERE_API_KEY = os.environ["COHERE_API_KEY"] | |
co = cohere.Client(COHERE_API_KEY) | |
# Configuration: Set to True if running locally, False if running on Streamlit Cloud | |
IS_LOCAL = False | |
# Constants | |
SEARCH_TYPES = ["web", "image", "video", "news", "discover", "googleNews"] | |
DATE_RANGE_OPTIONS = [ | |
"Last 7 Days", | |
"Last 30 Days", | |
"Last 3 Months", | |
"Last 6 Months", | |
"Last 12 Months", | |
"Last 16 Months", | |
"Custom Range" | |
] | |
DEVICE_OPTIONS = ["All Devices", "desktop", "mobile", "tablet"] | |
BASE_DIMENSIONS = ["page", "query", "country", "date"] | |
MAX_ROWS = 250_000 | |
DF_PREVIEW_ROWS = 100 | |
# ------------- | |
# Streamlit App Configuration | |
# ------------- | |
def setup_streamlit(): | |
st.set_page_config(page_title="Keyword Relevance Test", layout="wide") | |
st.title("Keyword Relevance Test Using Vector Embedding") | |
st.divider() | |
def init_session_state(): | |
if 'selected_property' not in st.session_state: | |
st.session_state.selected_property = None | |
if 'selected_search_type' not in st.session_state: | |
st.session_state.selected_search_type = 'web' | |
if 'selected_date_range' not in st.session_state: | |
st.session_state.selected_date_range = 'Last 7 Days' | |
if 'start_date' not in st.session_state: | |
st.session_state.start_date = datetime.date.today() - datetime.timedelta(days=7) | |
if 'end_date' not in st.session_state: | |
st.session_state.end_date = datetime.date.today() | |
if 'selected_dimensions' not in st.session_state: | |
st.session_state.selected_dimensions = ['page', 'query'] | |
if 'selected_device' not in st.session_state: | |
st.session_state.selected_device = 'All Devices' | |
if 'custom_start_date' not in st.session_state: | |
st.session_state.custom_start_date = datetime.date.today() - datetime.timedelta(days=7) | |
if 'custom_end_date' not in st.session_state: | |
st.session_state.custom_end_date = datetime.date.today() | |
# ------------- | |
# Data Processing Functions | |
# ------------- | |
def fetch_content(url): | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.text, 'html.parser') | |
content = soup.get_text(separator=' ', strip=True) | |
return content | |
except requests.RequestException as e: | |
return str(e) | |
def generate_embeddings(text_list, model_type): | |
if not text_list: | |
return [] | |
model = 'embed-english-v3.0' if model_type == 'english' else 'embed-multilingual-v3.0' | |
input_type = 'search_document' | |
response = co.embed(model=model, texts=text_list, input_type=input_type) | |
embeddings = response.embeddings | |
return embeddings | |
def calculate_single_relevancy_score(page_content, query, model_type): | |
page_embedding = generate_embeddings([page_content], model_type)[0] | |
query_embedding = generate_embeddings([query], model_type)[0] | |
relevancy_score = cosine_similarity([query_embedding], [page_embedding])[0][0] | |
return relevancy_score | |
def process_gsc_data(df): | |
df_sorted = df.sort_values(['impressions'], ascending=[False]) | |
df_unique = df_sorted.drop_duplicates(subset='page', keep='first') | |
result = df_unique[['page', 'query', 'clicks', 'impressions', 'ctr', 'position']] | |
result['relevancy_score'] = None # Initialize relevancy_score as None | |
return result | |
# ------------- | |
# Google Authentication Functions | |
# ------------- | |
def load_config(): | |
client_config = { | |
"web": { | |
"client_id": os.environ["CLIENT_ID"], | |
"client_secret": os.environ["CLIENT_SECRET"], | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"redirect_uris": ["https://poemsforaphrodite-gscpro.hf.space/"], | |
} | |
} | |
return client_config | |
def init_oauth_flow(client_config): | |
scopes = ["https://www.googleapis.com/auth/webmasters.readonly"] | |
flow = Flow.from_client_config( | |
client_config, | |
scopes=scopes, | |
redirect_uri=client_config["web"]["redirect_uris"][0] | |
) | |
return flow | |
def google_auth(client_config): | |
flow = init_oauth_flow(client_config) | |
auth_url, _ = flow.authorization_url(prompt="consent") | |
return flow, auth_url | |
def auth_search_console(client_config, credentials): | |
token = { | |
"token": credentials.token, | |
"refresh_token": credentials.refresh_token, | |
"token_uri": credentials.token_uri, | |
"client_id": credentials.client_id, | |
"client_secret": credentials.client_secret, | |
"scopes": credentials.scopes, | |
"id_token": getattr(credentials, "id_token", None), | |
} | |
return searchconsole.authenticate(client_config=client_config, credentials=token) | |
# ------------- | |
# Data Fetching Functions | |
# ------------- | |
def list_gsc_properties(credentials): | |
service = build('webmasters', 'v3', credentials=credentials) | |
site_list = service.sites().list().execute() | |
return [site['siteUrl'] for site in site_list.get('siteEntry', [])] or ["No properties found"] | |
def fetch_gsc_data(webproperty, search_type, start_date, end_date, dimensions, device_type=None): | |
query = webproperty.query.range(start_date, end_date).search_type(search_type).dimension(*dimensions) | |
if 'device' in dimensions and device_type and device_type != 'All Devices': | |
query = query.filter('device', 'equals', device_type.lower()) | |
try: | |
df = query.limit(MAX_ROWS).get().to_dataframe() | |
return process_gsc_data(df) | |
except Exception as e: | |
show_error(e) | |
return pd.DataFrame() | |
def calculate_relevancy_scores(df, model_type): | |
with st.spinner('Calculating relevancy scores...'): | |
try: | |
page_contents = [fetch_content(url) for url in df['page']] | |
page_embeddings = generate_embeddings(page_contents, model_type) | |
query_embeddings = generate_embeddings(df['query'].tolist(), model_type) | |
relevancy_scores = cosine_similarity(query_embeddings, page_embeddings).diagonal() | |
df = df.assign(relevancy_score=relevancy_scores) | |
except Exception as e: | |
st.warning(f"Error calculating relevancy scores: {e}") | |
df = df.assign(relevancy_score=0) | |
return df | |
# ------------- | |
# Utility Functions | |
# ------------- | |
def update_dimensions(selected_search_type): | |
return BASE_DIMENSIONS + ['device'] if selected_search_type in SEARCH_TYPES else BASE_DIMENSIONS | |
def calc_date_range(selection, custom_start=None, custom_end=None): | |
range_map = { | |
'Last 7 Days': 7, | |
'Last 30 Days': 30, | |
'Last 3 Months': 90, | |
'Last 6 Months': 180, | |
'Last 12 Months': 365, | |
'Last 16 Months': 480 | |
} | |
today = datetime.date.today() | |
if selection == 'Custom Range': | |
if custom_start and custom_end: | |
return custom_start, custom_end | |
else: | |
return today - datetime.timedelta(days=7), today | |
return today - datetime.timedelta(days=range_map.get(selection, 0)), today | |
def show_error(e): | |
st.error(f"An error occurred: {e}") | |
def property_change(): | |
st.session_state.selected_property = st.session_state['selected_property_selector'] | |
# ------------- | |
# File & Download Operations | |
# ------------- | |
def show_dataframe(report): | |
with st.expander("Preview the First 100 Rows (Unique Pages with Top Query)"): | |
st.dataframe(report.head(DF_PREVIEW_ROWS)) | |
def download_csv_link(report): | |
def to_csv(df): | |
return df.to_csv(index=False, encoding='utf-8-sig') | |
csv = to_csv(report) | |
b64_csv = base64.b64encode(csv.encode()).decode() | |
href = f'<a href="data:file/csv;base64,{b64_csv}" download="search_console_data.csv">Download CSV File</a>' | |
st.markdown(href, unsafe_allow_html=True) | |
# ------------- | |
# Streamlit UI Components | |
# ------------- | |
def show_google_sign_in(auth_url): | |
with st.sidebar: | |
if st.button("Sign in with Google"): | |
st.write('Please click the link below to sign in:') | |
st.markdown(f'[Google Sign-In]({auth_url})', unsafe_allow_html=True) | |
def show_property_selector(properties, account): | |
selected_property = st.selectbox( | |
"Select a Search Console Property:", | |
properties, | |
index=properties.index( | |
st.session_state.selected_property) if st.session_state.selected_property in properties else 0, | |
key='selected_property_selector', | |
on_change=property_change | |
) | |
return account[selected_property] | |
def show_search_type_selector(): | |
return st.selectbox( | |
"Select Search Type:", | |
SEARCH_TYPES, | |
index=SEARCH_TYPES.index(st.session_state.selected_search_type), | |
key='search_type_selector' | |
) | |
def show_model_type_selector(): | |
return st.selectbox( | |
"Select the embedding model:", | |
["english", "multilingual"], | |
key='model_type_selector' | |
) | |
def show_date_range_selector(): | |
return st.selectbox( | |
"Select Date Range:", | |
DATE_RANGE_OPTIONS, | |
index=DATE_RANGE_OPTIONS.index(st.session_state.selected_date_range), | |
key='date_range_selector' | |
) | |
def show_custom_date_inputs(): | |
st.session_state.custom_start_date = st.date_input("Start Date", st.session_state.custom_start_date) | |
st.session_state.custom_end_date = st.date_input("End Date", st.session_state.custom_end_date) | |
def show_dimensions_selector(search_type): | |
available_dimensions = update_dimensions(search_type) | |
return st.multiselect( | |
"Select Dimensions:", | |
available_dimensions, | |
default=st.session_state.selected_dimensions, | |
key='dimensions_selector' | |
) | |
def show_paginated_dataframe(report, rows_per_page=20, model_type='english'): | |
# Check if required columns are present | |
required_columns = ['page', 'query', 'clicks', 'impressions', 'ctr', 'position'] | |
missing_columns = [col for col in required_columns if col not in report.columns] | |
if missing_columns: | |
st.error(f"Error: The following required columns are missing from the data: {', '.join(missing_columns)}") | |
return report | |
report['position'] = report['position'].astype(int) | |
report['impressions'] = pd.to_numeric(report['impressions'], errors='coerce') | |
def format_ctr(x): | |
try: | |
return f"{float(x):.2%}" | |
except ValueError: | |
return x | |
def format_relevancy_score(x): | |
if x is None: | |
return '<button class="calculate-btn">Calculate</button>' | |
try: | |
return f"{float(x):.2f}" | |
except ValueError: | |
return x | |
report['ctr'] = report['ctr'].apply(format_ctr) | |
if 'relevancy_score' not in report.columns: | |
report['relevancy_score'] = None | |
report['relevancy_score'] = report['relevancy_score'].apply(format_relevancy_score) | |
def make_clickable(url): | |
return f'<a href="{url}" target="_blank">{url}</a>' | |
report['clickable_url'] = report['page'].apply(make_clickable) | |
columns = ['clickable_url', 'query', 'impressions', 'clicks', 'ctr', 'position', 'relevancy_score'] | |
report = report[columns] | |
sort_column = st.selectbox("Sort by:", columns[1:], index=columns[1:].index('impressions')) | |
sort_order = st.radio("Sort order:", ("Descending", "Ascending")) | |
ascending = sort_order == "Ascending" | |
def safe_float_convert(x): | |
try: | |
return float(x.rstrip('%')) / 100 if isinstance(x, str) and x.endswith('%') else float(x) | |
except ValueError: | |
return 0 | |
report['ctr_numeric'] = report['ctr'].apply(safe_float_convert) | |
report['relevancy_score_numeric'] = report['relevancy_score'].apply(lambda x: safe_float_convert(x) if x != '<button class="calculate-btn">Calculate</button>' else -1) | |
sort_column_numeric = sort_column + '_numeric' if sort_column in ['ctr', 'relevancy_score'] else sort_column | |
report = report.sort_values(by=sort_column_numeric, ascending=ascending) | |
report = report.drop(columns=['ctr_numeric', 'relevancy_score_numeric']) | |
total_rows = len(report) | |
total_pages = (total_rows - 1) // rows_per_page + 1 | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = 1 | |
col1, col2, col3 = st.columns([1,3,1]) | |
with col1: | |
if st.button("Previous", disabled=st.session_state.current_page == 1): | |
st.session_state.current_page -= 1 | |
with col2: | |
st.write(f"Page {st.session_state.current_page} of {total_pages}") | |
with col3: | |
if st.button("Next", disabled=st.session_state.current_page == total_pages): | |
st.session_state.current_page += 1 | |
start_idx = (st.session_state.current_page - 1) * rows_per_page | |
end_idx = start_idx + rows_per_page | |
# Create a placeholder for the dataframe | |
dataframe_placeholder = st.empty() | |
# Function to update the dataframe | |
def update_dataframe(): | |
df_html = report.iloc[start_idx:end_idx].to_html(escape=False, index=False) | |
df_html = df_html.replace('</table>', ''.join([ | |
'<style>', | |
'.calculate-btn { cursor: pointer; padding: 5px 10px; background-color: #4CAF50; color: white; border: none; border-radius: 4px; }', | |
'.calculate-btn:hover { background-color: #45a049; }', | |
'</style>', | |
*[f'<script>document.getElementsByTagName("table")[0].rows[{i+1}].cells[6].onclick = function(e) {{ if(e.target.classList.contains("calculate-btn")) {{ Streamlit.setComponentValue("calculate_relevancy", {start_idx + i}); }} }}</script>' | |
for i in range(min(rows_per_page, len(report) - start_idx))] | |
]) + '</table>') | |
dataframe_placeholder.markdown(df_html, unsafe_allow_html=True) | |
# Initial dataframe display | |
update_dataframe() | |
# Handle relevancy calculation | |
if st.session_state.get('calculate_relevancy') is not None: | |
row_index = st.session_state.calculate_relevancy | |
logger.info(f"Calculating relevancy for row index: {row_index}") | |
try: | |
page_content = fetch_content(report.iloc[row_index]['page']) | |
query = report.iloc[row_index]['query'] | |
relevancy_score = calculate_single_relevancy_score(page_content, query, model_type) | |
logger.info(f"Relevancy score calculated: {relevancy_score}") | |
report.at[row_index, 'relevancy_score'] = f"{relevancy_score:.2f}" | |
st.session_state.calculate_relevancy = None # Reset the state | |
update_dataframe() # Update the dataframe display | |
st.success(f"Relevancy score calculated for row {row_index + 1}") | |
except Exception as e: | |
logger.error(f"Error calculating relevancy score: {str(e)}") | |
st.error(f"Error calculating relevancy score: {str(e)}") | |
return report | |
# ------------- | |
# Main Streamlit App Function | |
# ------------- | |
def main(): | |
logger.info("Starting the Streamlit app") | |
setup_streamlit() | |
client_config = load_config() | |
if 'auth_flow' not in st.session_state or 'auth_url' not in st.session_state: | |
logger.info("Initializing Google auth flow") | |
st.session_state.auth_flow, st.session_state.auth_url = google_auth(client_config) | |
# Directly access query parameters using st.query_params | |
query_params = st.query_params | |
# Retrieve the 'code' parameter | |
auth_code = query_params.get("code", None) | |
if auth_code and 'credentials' not in st.session_state: | |
logger.info("Fetching token with auth code") | |
st.session_state.auth_flow.fetch_token(code=auth_code) | |
st.session_state.credentials = st.session_state.auth_flow.credentials | |
logger.info("Credentials stored in session state") | |
if 'credentials' not in st.session_state: | |
logger.info("No credentials found, showing Google sign-in") | |
show_google_sign_in(st.session_state.auth_url) | |
else: | |
logger.info("Credentials found, initializing session state") | |
init_session_state() | |
account = auth_search_console(client_config, st.session_state.credentials) | |
properties = list_gsc_properties(st.session_state.credentials) | |
if properties: | |
logger.info(f"Found {len(properties)} properties") | |
webproperty = show_property_selector(properties, account) | |
search_type = show_search_type_selector() | |
date_range_selection = show_date_range_selector() | |
model_type = show_model_type_selector() | |
if date_range_selection == 'Custom Range': | |
show_custom_date_inputs() | |
start_date, end_date = st.session_state.custom_start_date, st.session_state.custom_end_date | |
else: | |
start_date, end_date = calc_date_range(date_range_selection) | |
selected_dimensions = show_dimensions_selector(search_type) | |
if 'report_data' not in st.session_state: | |
st.session_state.report_data = None | |
if st.button("Fetch Data"): | |
with st.spinner('Fetching data...'): | |
logger.info(f"Fetching GSC data for {webproperty} from {start_date} to {end_date}") | |
st.session_state.report_data = fetch_gsc_data(webproperty, search_type, start_date, end_date, selected_dimensions) | |
logger.info(f"Data fetched: {len(st.session_state.report_data)} rows") | |
if st.session_state.report_data is not None and not st.session_state.report_data.empty: | |
logger.info("Displaying fetched data") | |
st.write("Data fetched successfully. Click the 'Calculate' button in the Relevancy Score column to calculate the score for each row.") | |
st.session_state.report_data = show_paginated_dataframe(st.session_state.report_data, model_type=model_type) | |
download_csv_link(st.session_state.report_data) | |
elif st.session_state.report_data is not None: | |
logger.warning("No data found for the selected criteria") | |
st.warning("No data found for the selected criteria.") | |
else: | |
logger.warning("No properties found for the account") | |
st.warning("No properties found for your Google Search Console account.") | |
if __name__ == "__main__": | |
logger.info("Application started") | |
main() |