Spaces:
Running
Running
import os | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from interfaces.cap import languages as languages_cap | |
from interfaces.cap import domains as domains_cap | |
from interfaces.cap import build_huggingface_path as hf_cap_path | |
from interfaces.manifesto import build_huggingface_path as hf_manifesto_path | |
from interfaces.sentiment import build_huggingface_path as hf_sentiment_path | |
from interfaces.emotion import build_huggingface_path as hf_emotion_path | |
HF_TOKEN = os.environ["hf_read"] | |
# should be a temporary solution | |
models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")] | |
domains_cap = list(domains_cap.values()) | |
for language in languages_cap: | |
for domain in domains_cap: | |
models.append(hf_cap_path(language, domain)) | |
tokenizers = ["xlm-roberta-large"] | |
def download_hf_models(): | |
for model_id in models: | |
AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", | |
token=HF_TOKEN) | |
for tokenizer_id in tokenizers: | |
AutoTokenizer.from_pretrained(tokenizer_id) | |