File size: 16,901 Bytes
45d10c4
 
 
 
 
 
 
 
 
a00beed
d22f052
79b97e2
 
 
 
 
 
 
 
 
45d10c4
 
 
 
 
d22f052
 
45d10c4
 
 
8fe6e3e
45d10c4
 
8fe6e3e
45d10c4
 
79b97e2
 
45d10c4
 
 
 
 
 
 
 
 
 
 
 
2333c59
 
 
 
350b1a0
 
 
79b97e2
e81407b
 
9df8406
a00beed
 
 
 
d22f052
a00beed
350b1a0
 
 
a00beed
 
d22f052
 
 
 
 
 
 
a00beed
75ba191
 
 
 
 
 
 
 
 
 
b472976
a00beed
 
45d10c4
 
79b97e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df8406
 
 
 
a00beed
 
9df8406
 
 
 
 
 
 
6f614b5
9df8406
 
 
 
 
 
 
 
d22f052
9df8406
6f614b5
 
 
 
 
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350b1a0
 
 
45d10c4
 
 
 
 
 
 
 
 
 
350b1a0
 
 
45d10c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350b1a0
 
 
45d10c4
 
ff03afa
45d10c4
 
 
 
 
350b1a0
 
 
1c49ee1
 
 
 
 
79b97e2
45d10c4
 
 
8fe6e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2333c59
350b1a0
 
 
2333c59
 
 
eb8fa16
2333c59
f22250e
 
 
2333c59
8fe6e3e
 
350b1a0
 
 
8fe6e3e
 
 
 
 
 
 
 
350b1a0
 
 
1c49ee1
 
 
 
 
350b1a0
8fe6e3e
2333c59
 
 
350b1a0
 
 
2333c59
 
 
 
 
350b1a0
 
 
2333c59
 
 
 
 
 
 
8fe6e3e
2333c59
350b1a0
 
 
2333c59
 
 
 
 
 
 
350b1a0
2333c59
 
 
 
 
 
350b1a0
 
 
2333c59
 
 
 
 
 
 
 
 
 
 
8fe6e3e
2333c59
 
 
 
 
 
 
 
8fe6e3e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import nltk
import torch.nn.functional as F
import nltk
from scipy.special import softmax
import yaml
from utils import *
import joblib
from optimum.bettertransformer import BetterTransformer
import gc
from cleantext import clean
import gradio as gr
from tqdm.auto import tqdm
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
from optimum.pipelines import pipeline

with open("config.yaml", "r") as file:
    params = yaml.safe_load(file)
nltk.download("punkt")
nltk.download("stopwords")
device_needed = "cuda" if torch.cuda.is_available() else "cpu"
device = 'cpu'
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
text_1on1_models = params["TEXT_1ON1_MODEL"]
quillbot_labels = params["QUILLBOT_LABELS"]
mc_label_map = params["MC_OUTPUT_LABELS"]
text_1on1_label_map = params["1ON1_OUTPUT_LABELS"]
mc_token_size = int(params["MC_TOKEN_SIZE"])
bc_token_size = int(params["BC_TOKEN_SIZE"])
bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH']
bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH']
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(
    text_bc_model_path
).to(device)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(
    text_mc_model_path
).to(device)
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
    text_quillbot_model_path
).to(device)
tokenizers_1on1 = {}
models_1on1 = {}
for model_name, model in zip(mc_label_map, text_1on1_models):
    tokenizers_1on1[model_name] = AutoTokenizer.from_pretrained(model)
    models_1on1[model_name] = (
        AutoModelForSequenceClassification.from_pretrained(model).to(device)
    )



# proxy models for explainability
mini_bc_model_name = "polygraf-ai/bc-model-bert-mini"
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
    mini_bc_model_name
).to(device_needed)
mini_humanizer_model_name = "polygraf-ai/quillbot-detector-bert-mini-9K"
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
    mini_humanizer_model_name
)
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
    mini_humanizer_model_name
).to(device_needed)

bc_model_mini = BetterTransformer.transform(bc_model_mini)
humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini)
text_bc_model = BetterTransformer.transform(text_bc_model)
text_mc_model = BetterTransformer.transform(text_mc_model)
quillbot_model = BetterTransformer.transform(quillbot_model)

bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
bias_checker = pipeline(
    "text-classification",
    model=bias_checker_model_name,
    tokenizer=bias_checker_model_name,
)
gc.collect()
bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")

# model score calibration
iso_reg = joblib.load("isotonic_regression_model.joblib")


def split_text(text: str) -> list:
    sentences = sent_tokenize(text)
    return [[sentence] for sentence in sentences]

def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple:
    sentence_batches = split_text(text)
    corrected_text = []
    corrections = []
    for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."):
        raw_text = " ".join(batch)
        results = bias_checker(raw_text)
        if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9):
            corrected_batch = bias_corrector(raw_text)
            corrected_version = corrected_batch[0]["generated_text"]
            corrected_text.append(corrected_version)
            corrections.append((raw_text, corrected_version)) 
        else:
            corrected_text.append(raw_text)
    corrected_text = separator.join(corrected_text)
    return corrected_text, corrections

def update(text: str):
    text = clean(text, lower=False)
    corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
    corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
    return corrected_text, corrections_display


def split_text_allow_complete_sentences_nltk(
    text,
    max_length=256,
    tolerance=30,
    min_last_segment_length=100,
    type_det="bc",
):
    sentences = nltk.sent_tokenize(text)
    segments = []
    current_segment = []
    current_length = 0
    if type_det == "bc":
        tokenizer = text_bc_tokenizer
        max_length = bc_token_size
    elif type_det == "mc":
        tokenizer = text_mc_tokenizer
        max_length = mc_token_size
    for sentence in sentences:
        tokens = tokenizer.tokenize(sentence)
        sentence_length = len(tokens)

        if current_length + sentence_length <= max_length + tolerance - 2:
            current_segment.append(sentence)
            current_length += sentence_length
        else:
            if current_segment:
                encoded_segment = tokenizer.encode(
                    " ".join(current_segment),
                    add_special_tokens=True,
                    max_length=max_length + tolerance,
                    truncation=True,
                )
                segments.append((current_segment, len(encoded_segment)))
            current_segment = [sentence]
            current_length = sentence_length

    if current_segment:
        encoded_segment = tokenizer.encode(
            " ".join(current_segment),
            add_special_tokens=True,
            max_length=max_length + tolerance,
            truncation=True,
        )
        segments.append((current_segment, len(encoded_segment)))

    final_segments = []
    for i, (seg, length) in enumerate(segments):
        if i == len(segments) - 1:
            if length < min_last_segment_length and len(final_segments) > 0:
                prev_seg, prev_length = final_segments[-1]
                combined_encoded = tokenizer.encode(
                    " ".join(prev_seg + seg),
                    add_special_tokens=True,
                    max_length=max_length + tolerance,
                    truncation=True,
                )
                if len(combined_encoded) <= max_length + tolerance:
                    final_segments[-1] = (prev_seg + seg, len(combined_encoded))
                else:
                    final_segments.append((seg, length))
            else:
                final_segments.append((seg, length))
        else:
            final_segments.append((seg, length))

    decoded_segments = []
    encoded_segments = []
    for seg, _ in final_segments:
        encoded_segment = tokenizer.encode(
            " ".join(seg),
            add_special_tokens=True,
            max_length=max_length + tolerance,
            truncation=True,
        )
        decoded_segment = tokenizer.decode(encoded_segment)
        decoded_segments.append(decoded_segment)
    return decoded_segments


def predict_quillbot(text):
    with torch.no_grad():
        quillbot_model.eval()
        tokenized_text = quillbot_tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=256,
            return_tensors="pt",
        ).to(device)
        output = quillbot_model(**tokenized_text)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        q_score = {
            "Humanized": output_norm[1].item(),
            "Original": output_norm[0].item(),
        }
        return q_score


def predict_for_explainanility(text, model_type=None):
    if model_type == "quillbot":
        cleaning = False
        max_length = 256
        model = humanizer_model_mini
        tokenizer = humanizer_tokenizer_mini
    elif model_type == "bc":
        cleaning = True
        max_length = 512
        model = bc_model_mini
        tokenizer = bc_tokenizer_mini
    else:
        raise ValueError("Invalid model type")
    with torch.no_grad():
        if cleaning:
            text = [remove_special_characters(t) for t in text]
        tokenized_text = tokenizer(
            text,
            return_tensors="pt",
            padding="max_length",
            truncation=True,
            max_length=max_length,
        ).to(device_needed)
        outputs = model(**tokenized_text)
        tensor_logits = outputs[0]
        probas = F.softmax(tensor_logits).detach().cpu().numpy()
    return probas


def predict_bc(model, tokenizer, text):
    with torch.no_grad():
        model.eval()
        tokens = text_bc_tokenizer(
            text,
            padding="max_length",
            truncation=True,
            max_length=bc_token_size,
            return_tensors="pt",
        ).to(device)
        output = model(**tokens)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        return output_norm


def predict_mc(model, tokenizer, text):
    with torch.no_grad():
        model.eval()
        tokens = text_mc_tokenizer(
            text,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
            max_length=mc_token_size,
        ).to(device)
        output = model(**tokens)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        return output_norm


def predict_mc_scores(input):
    bc_scores = []
    mc_scores = []

    samples_len_bc = len(
        split_text_allow_complete_sentences_nltk(input, type_det="bc")
    )
    segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
    for i in range(samples_len_bc):
        cleaned_text_bc = remove_special_characters(segments_bc[i])
        bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
        bc_scores.append(bc_score)
    bc_scores_array = np.array(bc_scores)
    average_bc_scores = np.mean(bc_scores_array, axis=0)
    bc_score_list = average_bc_scores.tolist()
    bc_score = {"AI": bc_score_list[1], "HUMAN": bc_score_list[0]}
    segments_mc = split_text_allow_complete_sentences_nltk(input, type_det="mc")
    samples_len_mc = len(
        split_text_allow_complete_sentences_nltk(input, type_det="mc")
    )
    for i in range(samples_len_mc):
        cleaned_text_mc = remove_special_characters(segments_mc[i])
        mc_score = predict_mc(text_mc_model, text_mc_tokenizer, cleaned_text_mc)
        mc_scores.append(mc_score)
    mc_scores_array = np.array(mc_scores)
    average_mc_scores = np.mean(mc_scores_array, axis=0)
    mc_score_list = average_mc_scores.tolist()
    mc_score = {}
    for score, label in zip(mc_score_list, mc_label_map):
        mc_score[label.upper()] = score

    sum_prob = 1 - bc_score["HUMAN"]
    for key, value in mc_score.items():
        mc_score[key] = value * sum_prob
    if sum_prob < 0.01:
        mc_score = {}

    return mc_score


def predict_bc_scores(input):
    bc_scores = []
    samples_len_bc = len(
        split_text_allow_complete_sentences_nltk(input, type_det="bc")
    )
    segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
    for i in range(samples_len_bc):
        cleaned_text_bc = remove_special_characters(segments_bc[i])
        bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
        bc_scores.append(bc_score)
    bc_scores_array = np.array(bc_scores)
    average_bc_scores = np.mean(bc_scores_array, axis=0)
    bc_score_list = average_bc_scores.tolist()
    print(
        f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
    )
    # isotonic regression calibration
    ai_score = iso_reg.predict([bc_score_list[1]])[0]
    human_score = 1 - ai_score
    bc_score = {"AI": ai_score, "HUMAN": human_score}
    print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
    print(f"Input Text: {cleaned_text_bc}")
    return bc_score


def predict_1on1(model, tokenizer, text):
    with torch.no_grad():
        model.eval()
        tokens = tokenizer(
            text,
            padding="max_length",
            truncation=True,
            return_tensors="pt",
            max_length=mc_token_size,
        ).to(device)
        output = model(**tokens)
        output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
        return output_norm


def predict_1on1_combined(input):
    predictions = []
    for i, model in enumerate(text_1on1_models):
        predictions.append(
            predict_1on1(models_1on1[model], tokenizers_1on1[model], input)[1]
        )
    return predictions


def predict_1on1_single(input, model):
    predictions = predict_1on1(
        models_1on1[model], tokenizers_1on1[model], input
    )[1]
    return predictions


def predict_mc_scores(input, models):

    if len(models) == 0:
        return {}

    print(f"Models to Test: {models}")
    # BC SCORE
    bc_scores = []
    samples_len_bc = len(
        split_text_allow_complete_sentences_nltk(input, type_det="bc")
    )
    segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
    for i in range(samples_len_bc):
        cleaned_text_bc = remove_special_characters(segments_bc[i])
        bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
        bc_scores.append(bc_score)
    bc_scores_array = np.array(bc_scores)
    average_bc_scores = np.mean(bc_scores_array, axis=0)
    bc_score_list = average_bc_scores.tolist()
    print(
        f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
    )
    # isotonic regression calibration
    ai_score = iso_reg.predict([bc_score_list[1]])[0]
    human_score = 1 - ai_score
    bc_score = {"AI": ai_score, "HUMAN": human_score}
    print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")

    # MC SCORE
    if len(models) > 1:
        print("Starting MC")
        mc_scores = []
        segments_mc = split_text_allow_complete_sentences_nltk(
            input, type_det="mc"
        )
        samples_len_mc = len(
            split_text_allow_complete_sentences_nltk(input, type_det="mc")
        )
        for i in range(samples_len_mc):
            cleaned_text_mc = remove_special_characters(segments_mc[i])
            mc_score = predict_mc(
                text_mc_model, text_mc_tokenizer, cleaned_text_mc
            )
            mc_scores.append(mc_score)
        mc_scores_array = np.array(mc_scores)
        average_mc_scores = np.mean(mc_scores_array, axis=0)
        mc_score_list = average_mc_scores.tolist()
        mc_score = {}
        for score, label in zip(mc_score_list, mc_label_map):
            mc_score[label.upper()] = score

        mc_score = {
            key: mc_score[key.upper()]
            for key in models
            if key.upper() in mc_score
        }
        total = sum(mc_score.values())
        # Normalize each value by dividing it by the total
        mc_score = {key: value / total for key, value in mc_score.items()}
        sum_prob = 1 - bc_score["HUMAN"]
        for key, value in mc_score.items():
            mc_score[key] = value * sum_prob
        print("MC Score:", mc_score)
        if sum_prob < 0.01:
            mc_score = {}

    elif len(models) == 1:
        print("Starting 1on1")
        mc_scores = []
        segments_mc = split_text_allow_complete_sentences_nltk(
            input, type_det="mc"
        )
        samples_len_mc = len(
            split_text_allow_complete_sentences_nltk(input, type_det="mc")
        )
        for i in range(samples_len_mc):
            cleaned_text_mc = remove_special_characters(segments_mc[i])
            mc_score = predict_1on1_single(cleaned_text_mc, models[0])
            mc_scores.append(mc_score)
        mc_scores_array = np.array(mc_scores)
        average_mc_scores = np.mean(mc_scores_array, axis=0)
        print(average_mc_scores)
        mc_score_list = average_mc_scores.tolist()
        mc_score = {}
        mc_score[models[0].upper()] = mc_score_list
        mc_score["OTHER"] = 1 - mc_score_list

        sum_prob = 1 - bc_score["HUMAN"]
        for key, value in mc_score.items():
            mc_score[key] = value * sum_prob
        if sum_prob < 0.01:
            mc_score = {}

    return mc_score