Spaces:
Paused
Paused
import gradio as gr | |
import random | |
import torch | |
from transformers import MT5Tokenizer, MT5ForConditionalGeneration | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer = MT5Tokenizer.from_pretrained("potsawee/mt5-english-thai-large-translation") | |
translator = MT5ForConditionalGeneration.from_pretrained("potsawee/mt5-english-thai-large-translation") | |
summarizer = MT5ForConditionalGeneration.from_pretrained("potsawee/mt5-english-thai-large-summarization") | |
translator.eval() | |
summarizer.eval() | |
translator.to(device) | |
summarizer.to(device) | |
# def generate_multiple_choice_question( | |
# context | |
# ): | |
# num_questions = 1 | |
# question_item = question_generation_sampling( | |
# g1_model, g1_tokenizer, | |
# g2_model, g2_tokenizer, | |
# context, num_questions, device | |
# )[0] | |
# question = question_item['question'] | |
# options = question_item['options'] | |
# options[0] = f"{options[0]} [ANSWER]" | |
# random.shuffle(options) | |
# output_string = f"Question: {question}\n[A] {options[0]}\n[B] {options[1]}\n[C] {options[2]}\n[D] {options[3]}" | |
# return output_string | |
# | |
# demo = gr.Interface( | |
# fn=generate_multiple_choice_question, | |
# inputs=gr.Textbox(lines=8, placeholder="Context Here..."), | |
# outputs=gr.Textbox(lines=5, placeholder="Question: \n[A] \n[B] \n[C] \n[D] "), | |
# title="Multiple-choice Question Generator", | |
# description="Provide some context (e.g. news article or any passage) in the context box and click **Submit**. The models currently support English only. This demo is a part of MQAG - https://github.com/potsawee/mqag0.", | |
# allow_flagging='never' | |
# ) | |
def generate_output( | |
task, | |
text, | |
): | |
inputs = tokenizer( | |
[text], | |
padding="longest", | |
max_length=1024, | |
truncation=True, | |
return_tensors="pt", | |
).to(device) | |
if task == 'Translation': | |
outputs = translator.generate( | |
**inputs, | |
max_new_tokens=256, | |
) | |
elif task == 'Summarization': | |
outputs = summarizer.generate( | |
**inputs, | |
max_new_tokens=256, | |
) | |
else: | |
raise ValueError("task undefined!") | |
gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return gen_text | |
TASKS = ["Translation", "Summarization"] | |
demo = gr.Interface( | |
fn=generate_output, | |
inputs=[ | |
gr.components.Radio(label="Task", choices=TASKS, value="Translation"), | |
gr.components.Textbox(label="Text (in English)", lines=10), | |
], | |
outputs=gr.Textbox(label="Text (in Thai)", lines=4), | |
# examples=[["Building a translation demo with Gradio is so easy!", "eng_Latn", "spa_Latn"]], | |
cache_examples=False, | |
title="English🇬🇧 to Thai🇹🇭 | Translation or Summarization", | |
description="Provide some text (in English) & select one of the tasks (Translation or Summarization). Note that currently the model only supports text up to 1024 tokens. The base architecture is mt5-large with the embeddings filtered to only English and Thai tokens and fine-tuned to XSum (Eng2Thai) Dataset (https://huggingface.co/datasets/potsawee/xsum_eng2thai).", | |
allow_flagging='never' | |
) | |
demo.launch() | |