Spaces:
Runtime error
Runtime error
ο»Ώ | |
1. Project Structure | |
First, let's organize the project into logical modules. Here's a suggested directory structure: | |
Chatter/ | |
βββ .gitignore | |
βββ .env | |
βββ requirements.txt | |
βββ app.py | |
βββ ChatAI/ | |
β βββ chat_ai.py | |
β βββ __init__.py | |
βββ core/ | |
β βββ __init__.py | |
β βββ bot.py | |
β β βββ __init__.py | |
β βββ message_handler.py | |
β βββ __init__.py | |
βββ logging/ | |
β βββ __init__.py | |
β βββ handlers.py | |
βββ utils/ | |
β βββ __init__.py | |
β βββ constants.py | |
β βββ decorators.py | |
βββ .env.local | |
2. Move Code to Modules | |
Let's break down the existing code into these modules: | |
a) core/bot.py | |
Move the bot initialization, command setup, and basic functionality here. | |
import commands | |
from .message_handler import on_message, respond_to_chat | |
from .utils import split_string, generate, generate_response | |
bot = commands.Bot(command_prefix="!") | |
def setup_commands(): | |
# Command definitions | |
pass | |
async def on_ready(): | |
print(f'Logged in as {bot.user}') | |
# Initialize channels and message counts | |
pass | |
@bot.event | |
async def on_message(message): | |
# Verification logic | |
pass | |
@bot.event | |
async def on_ready(): | |
# Bot initialization and setup | |
pass | |
# Initialize message counts and channels | |
message_counts = {} | |
channel = get_default_channel() | |
b) core/message_handler.py | |
Move the message handling logic here. | |
import discord | |
from .utils import split_string, generate, generate_response | |
@bot.event | |
async def on_message(message): | |
guild = message.guild | |
channel = get_default_channel() | |
if message.channel != channel or message.author.bot: | |
return | |
if message.channel.id not in message_counts: | |
message_counts[message.channel.id] = 0 | |
message_counts[message.channel.id] += 1 | |
print(message_counts[message.channel.id]) | |
await respond_to_chat(message.content) | |
if message_counts[message.channel.id] >= 10: | |
messages = [message.content] | |
# Get previous messages from history | |
async for msg in channel.history(limit=10): | |
messages.append(msg.content) | |
messages = "\n".join(messages) | |
await respond_to_chat(messages) | |
message_counts[message.channel.id] = 0 | |
async def respond_to_chat(content: str) -> str: | |
response = generate(content) | |
parts = split_string(response) | |
# Send parts to channel | |
await send_split_message(parts, channel) | |
return "\n".join(parts) | |
def split_string(text: str) -> list[str]: | |
return [text[i:i+1900] for i in range(0, len(text), 1900)] | |
def generate( | |
prompt, temperature=0.0, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0 | |
): | |
# Use MistralAI model | |
pass | |
def generate_response(prompt): | |
# Use MistralAI model | |
pass | |
async def send_split_message(parts, channel): | |
for part in parts: | |
await channel.send(part) | |
c) core/utils.py | |
Move the utility functions here. | |
import os | |
from huggingface_hub import InferenceClient | |
def split_string(text: str) -> list[str]: | |
"""Helper function to split text into chunks""" | |
return [text[i:i+1900] for i in range(0, len(text), 1900)] | |
def generate( | |
prompt, temperature=0.0, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0 | |
): | |
"""Generate response using MistralAI model""" | |
if temperature == 0.0: | |
temperature = random.uniform(1e-2, 0.9) | |
temperature = float(temperature) | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
return ai.text_generation(prompt, **generate_kwargs, stream=False, details=False, | |
return_full_text=True) | |
def generate_response(prompt): | |
"""Generate and format response""" | |
response = generate(prompt) | |
formatted_response = "\n".join(response) | |
return formatted_response | |
def get_default_channel(): | |
return discord.utils.get(guild.channels, name="PrzebieralniaKoedukacyjna") | |
d) ChatAI/chat_ai.py | |
Move the AI configuration here. | |
from huggingface_hub import InferenceClient | |
class ChatAI: | |
def __init__(self): | |
self.pipe = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
async def generate(self, prompt): | |
return self.pipe.generate(prompt) | |
3. Dependency Management | |
Update the requirements.txt to use a modern package manager like Poetry: | |
requirements.txt | |
<<<<<<< SEARCH | |
transformers | |
huggingface_hub==0.25.2 | |
discord.py~=2.4.0 | |
discord~=2.3.2 | |
torch | |
six | |
python-dotenv~=1.0.1 | |
huggingface-hub~=0.25.2 | |
======= | |
discord~=2.4.0 | |
discord.py~=2.4.0 | |
transformers | |
huggingface_hub>=0.25.0 | |
torch | |
six | |
python-dotenv>=1.0.0 | |
poetry | |
>>>>>>> REPLACE | |
Run: | |
poetry install | |
4. Add Logging | |
Create a logging module: | |
utils/logging.py | |
import logging | |
from datetime import datetime | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[logging.FileHandler('chat.log')] | |
) | |
logger = logging.getLogger(__name__) | |
5. Initialize the Bot | |
Create a main.py to initialize and run the bot: | |
main.py | |
from core.bot import commands | |
from core.message_handler import on_ready, on_message, respond_to_chat | |
from core.utils import split_string, generate, generate_response | |
from ChatAI.chat_ai import ChatAI | |
import logging | |
# Initialize logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[logging.FileHandler('chat.log')] | |
) | |
logger = logging.getLogger(__name__) | |
# Initialize bot | |
bot = commands.Bot(command_prefix="!") | |
# Initialize AI | |
ai = ChatAI() | |
# Initialize message handler | |
async def setup(): | |
logger.info("Initializing bot and message handler") | |
await on_ready() | |
logger.info("Bot initialized") | |
async def run_bot(): | |
try: | |
await setup() | |
logger.info("Bot running...") | |
while True: | |
await bot.process_commands() | |
except Exception as e: | |
logger.error(f"Error in bot loop: {str(e)}") | |
logger.info("Bot shutdown") | |
finally: | |
logger.info("Bot shutdown complete") | |
if __name__ == "__main__": | |
try: | |
logger.info("Starting bot") | |
await bot.start(DISCORD_TOKEN_CHATTER) | |
logger.info("Bot running") | |
except Exception as e: | |
logger.error(f"Error starting bot: {str(e)}") | |
logger.info("Bot shutdown") | |
6. Testing | |
Add tests to ensure the bot works as expected. | |
tests/ βββ .gitignore βββ test_message_handler.py βββ test_chat_ai.py | |
7. Deployment | |
For production, consider: | |
β’ Using a server (like Heroku or Railway) | |
β’ Implementing proper security | |
β’ Adding monitoring | |
β’ Implementing rate limiting | |
8. Documentation | |
Add documentation to your project for future developers. | |
9. Deployment Setup | |
Set up a deployment environment with: | |
poetry run --build | |
Then deploy to your chosen platform. | |
Summary | |
This structured approach organizes the project into modular components, manages dependencies | |
effectively, and provides logging and error handling for reliability. By following these steps, you'll | |
have a maintainable, scalable, and robust project structure. |