pragmatic-synthesizer / listener.py
saujasv's picture
make demo gpu compatible
1a8e5ac
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
from dataclasses import dataclass
from typing import List, Optional
from utils import (
get_preprocess_function,
get_utterance_processing_functions,
byt5_decode_batch,
consistent,
)
from utils import (
PROGRAM_SPECIAL_TOKEN,
UTTERANCES_SPECIAL_TOKEN,
GT_PROGRAM_SPECIAL_TOKEN,
)
from greenery import parse
from greenery.parse import NoMatch
import numpy as np
import torch
class Agent:
def __init__(
self,
model_path: str,
gen_config: dict,
inference_batch_size: int = 1,
device=None,
):
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_path).to(device)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.gen_config = GenerationConfig(**gen_config)
self.inference_batch_size = inference_batch_size
@dataclass
class ListenerOutput:
programs: List[List[str]]
idx: Optional[List[List[int]]] = None
decoded: Optional[List[List[str]]] = None
decoded_scores: Optional[List[List[float]]] = None
pruned: Optional[List[List[str]]] = None
class Listener(Agent):
def __init__(
self,
model_path,
gen_config,
inference_batch_size=4,
label_pos="suffix",
idx: bool = True,
program_special_token=PROGRAM_SPECIAL_TOKEN,
utterances_special_token=UTTERANCES_SPECIAL_TOKEN,
device=None,
):
super().__init__(model_path, gen_config, inference_batch_size, device)
self.label_pos = label_pos
self.idx = idx
self.program_special_token = program_special_token
self.utterances_special_token = utterances_special_token
self.utterances_to_string, self.string_to_utterances = (
get_utterance_processing_functions(
label_pos, idx, separator=utterances_special_token
)
)
self.device = self.model.device
def synthesize(self, context, return_scores=False, enforce_consistency=True):
# If context is a list of utterances, convert to string
if isinstance(context[0], list):
context_str = list(map(self.utterances_to_string, context))
else:
context_str = context
context_tokens = self.tokenizer(
[
(
f"{self.utterances_special_token}{c}"
if not c.startswith(self.utterances_special_token)
else c
)
for c in context_str
],
return_tensors="pt",
padding=True,
).to(self.device)
decoder_inputs = self.tokenizer(
[self.program_special_token for _ in context],
return_tensors="pt",
add_special_tokens=False,
).to(self.device)
outputs = self.model.generate(
**context_tokens,
decoder_input_ids=decoder_inputs.input_ids,
generation_config=self.gen_config,
return_dict_in_generate=True,
output_scores=True,
)
decoded_batch = byt5_decode_batch(
outputs.sequences.reshape(
(len(context), -1, outputs.sequences.shape[-1])
).tolist(),
skip_position_token=True,
skip_special_tokens=True,
)
consistent_programs = []
idxs = []
for decoded, ctx in zip(decoded_batch, context):
cp = []
idx = []
for i, p in enumerate(decoded):
if enforce_consistency:
if consistent(p, ctx):
cp.append(p)
idx.append(i)
else:
cp.append(p)
idx.append(i)
consistent_programs.append(cp)
idxs.append(idx)
logprobs = torch.stack(outputs.scores, dim=1).log_softmax(dim=-1)
gen_probs = torch.gather(logprobs, 2, outputs.sequences[:, 1:, None]).squeeze(
-1
)
gen_probs.masked_fill_(gen_probs.isinf(), 0)
scores = gen_probs.sum(-1)
n_decoded = scores.shape[0]
n_seq = n_decoded // len(context)
scores = scores.reshape((len(context), n_seq))
scores_list = scores.tolist()
if return_scores:
return ListenerOutput(consistent_programs, idxs, decoded_batch, scores_list)
else:
return ListenerOutput(consistent_programs)