File size: 5,823 Bytes
339957b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from __future__ import absolute_import, division, print_function, unicode_literals
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
from flask_cors import CORS
import sys
import os
import librosa
import librosa.display
import numpy as np
from datetime import date
import re
import json
import email
import csv
import datetime
import smtplib
import ssl
from email.mime.text import MIMEText
import time
import pytz
import requests
import pyaudio
import wave
import shutil
import warnings
import tensorflow as tf
import gradio as gr
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras.layers import Flatten, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import BatchNormalization
from sklearn.model_selection import train_test_split
from tqdm import tqdm
warnings.filterwarnings("ignore")
timestamp = datetime.datetime.now()
current_date = timestamp.strftime('%d-%m-%Y')
current_time = timestamp.strftime('%I:%M:%S')
IP = ''
cwd = os.getcwd()
classLabels = ('Angry', 'Fear', 'Disgust', 'Happy', 'Sad', 'Surprised', 'Neutral')
numLabels = len(classLabels)
in_shape = (39,216)
model = Sequential()
model.add(Conv2D(8, (13, 13), input_shape=(in_shape[0], in_shape[1], 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (13, 13)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Conv2D(8, (3, 3)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(Conv2D(8, (1, 1)))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 1)))
model.add(Flatten())
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(numLabels, activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adam',
metrics=['accuracy'])
# print(model.summary(), file=sys.stderr)
model.load_weights('speech_emotion_detection_ravdess_savee.h5')
# app = Flask(__name__)
# app._static_folder = os.path.join( "/home/ubuntu/Desktop/nlpdemos/server_demos/speech_emotion/static" )
def selected_audio(audio):
if audio and audio != 'Please select any of the following options':
post_file_name = audio.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
if os.path.exists(filepath):
print("SELECT file name => ",filepath)
result = predict_speech_emotion(filepath)
print("result = ",result)
return result
def recorded_audio(audio):
try:
fileList = os.listdir('recorded_audio')
new_wav_file = ""
if(fileList):
filename_list = []
for i in fileList:
filename = i.split('.')[0]
filename_list.append(int(filename))
max_file = max(filename_list)
new_wav_file = int(max_file) + 1
else:
new_wav_file="1"
new_wav_file = str(new_wav_file) + ".wav"
# filepath = os.path.join('recorded_audio', new_wav_file)
# shutil.move(recorded_audio, filepath)
filepath = 'recorded_audio/22.wav'
result = predict_speech_emotion(audio.name)
return result
except Exception as e:
print(e)
return "ERROR"
def predict_speech_emotion(filepath):
if os.path.exists(filepath):
print("last file name => ",filepath)
X, sample_rate = librosa.load(filepath, res_type='kaiser_best',duration=2.5,sr=22050*2,offset=0.5)
sample_rate = np.array(sample_rate)
mfccs = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=39)
feature = mfccs
feature = feature.reshape(39, 216, 1)
# np_array = np.array([feature])
np_array = np.array([feature])
prediction = model.predict(np_array)
np_argmax = np.argmax(prediction)
result = classLabels[np_argmax]
return result
# demo = gr.Interface(
# fn=send_audio,
# inputs=gr.Audio(source="microphone", type="filepath"),
# outputs="text")
# demo.launch()
# selected_audio = gr.Dropdown(["Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
# lable = "Input Audio")
# audio_ui=gr.Audio()
# text = gr.Textbox()
# demo = gr.Interface(
# fn=send_audio,
# inputs=selected_audio,
# outputs=[audio_ui,text])
# demo.launch()
def return_audio_clip(audio_text):
post_file_name = audio_text.lower() + '.wav'
filepath = os.path.join("pre_recoreded",post_file_name)
return filepath
with gr.Blocks() as demo:
gr.Markdown("Select audio or record audio")
with gr.Row():
with gr.Column():
input_audio_text = gr.Dropdown(["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
lable = "Input Audio",interactive=True)
audio_ui=gr.Audio()
input_audio_text.change(return_audio_clip,input_audio_text,audio_ui)
output_text = gr.Textbox(lable="Prdicted emotion")
sub_btn = gr.Button("Submit")
with gr.Column():
audio=gr.Audio(source="microphone", type="file",labele="Recored audio")
recorded_text = gr.Textbox(lable="Prdicted emotion")
with gr.Column():
sub_btn2 = gr.Button("Submit")
sub_btn.click(selected_audio, inputs=input_audio_text, outputs=output_text)
sub_btn2.click(recorded_audio, inputs=audio, outputs=recorded_text)
demo.launch() |