File size: 6,286 Bytes
ac6d4c1
de61051
c180965
ffe0ae6
65b16be
8cb8af8
9c201a3
ffe0ae6
 
cb5876d
 
 
5b4920d
1e6cb9e
2fa5683
 
cb5876d
 
c6a2c72
01127b3
 
 
c6a2c72
 
c44a830
c6a2c72
b457150
 
 
 
 
 
 
 
 
 
 
 
57e4f69
b457150
 
cb5876d
 
 
 
 
2fa5683
 
 
cb5876d
0683b76
 
 
 
 
 
 
 
 
84c894b
0683b76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5876d
3871315
cb5876d
 
 
3c82b91
7023483
3c82b91
 
 
 
7023483
3c82b91
 
 
 
 
 
a612f12
5946634
a612f12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a2478
a612f12
 
 
cb5876d
c6a2c72
 
 
1d07330
cb5876d
0683b76
 
 
 
 
c6a2c72
0683b76
cb5876d
 
 
 
 
 
1d07330
3a7422a
0d9cdc0
bc08c08
0683b76
ba64d69
 
066b4d7
cb5876d
bd0f1db
cb5876d
 
 
 
 
 
c44a830
a612f12
7023483
 
 
 
 
 
c44a830
a612f12
 
698c7e0
a612f12
30887f9
7023483
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import gc
import csv
import socket
import json
import huggingface_hub
import requests

import re as r
import gradio as gr
import pandas as pd

from huggingface_hub import Repository
from urllib.request import urlopen
# from transformers import AutoTokenizer, AutoModelWithLMHead 
from transformers import AutoModelForCausalLM, AutoTokenizer

## connection with HF datasets
HF_TOKEN = os.environ.get("HF_TOKEN")
# DATASET_NAME = "emotion_detection_dataset"
# DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATASET_REPO_URL = "https://huggingface.co/datasets/pragnakalp/emotion_detection_dataset"
DATA_FILENAME = "emotion_detection_logs.csv"
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/emotion_detection_dataset"
print("is none?", HF_TOKEN is None)
try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
    
except:
    print("file not found")

repo = Repository(
    local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him."""
## load model
cwd = os.getcwd()
model_path = os.path.join(cwd)
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
# model_base = AutoModelWithLMHead.from_pretrained(model_path)
# Instead of AutoModelWithLMHead
model_base = AutoModelForCausalLM.from_pretrained(model_path)

def getIP():
    ip_address = ''
    try:
    	d = str(urlopen('http://checkip.dyndns.com/')
    			.read())
    
    	return r.compile(r'Address: (\d+\.\d+\.\d+\.\d+)').search(d).group(1)
    except Exception as e:
        print("Error while getting IP address -->",e)
        return ip_address

def get_location(ip_addr):
    location = {}
    try:
        ip=ip_addr
    
        req_data={
            "ip":ip,
            "token":"pkml123"
        }
        url = "https://demos.pragnakalp.com/get-ip-location"
    
        # req_data=json.dumps(req_data)
        # print("req_data",req_data)
        headers = {'Content-Type': 'application/json'}
    
        response = requests.request("POST", url, headers=headers, data=json.dumps(req_data))
        response = response.json()
        print("response======>>",response)
        return response
    except Exception as e:
        print("Error while getting location -->",e)
        return location


"""
generate emotions of the sentences
"""
def get_emotion(text):

    # input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
    input_ids = tokenizer.encode(text, return_tensors='pt')
    output = model_base.generate(input_ids=input_ids,
                                 max_length=2)

    dec = [tokenizer.decode(ids) for ids in output]
    label = dec[0]
    gc.collect()
    return label

def generate_emotion(article):
    table = {'Input':[], 'Detected Emotion':[]}
    if article.strip():
        sen_list = article
        sen_list = sen_list.split('\n')
        while("" in sen_list):
            sen_list.remove("")
        sen_list_temp = sen_list[0:]
        print(sen_list_temp)
        results_dict = []
        results = []
    
        for sen in sen_list_temp:
            if(sen.strip()):
                cur_result = get_emotion(sen)
    
                results.append(cur_result)
                results_dict.append(
                    {
                        'sentence': sen,
                        'emotion': cur_result
                    }
                )
                
        table = {'Input':sen_list_temp, 'Detected Emotion':results}
        gc.collect()
        save_data_and_sendmail(article,results_dict,sen_list, results)
        return pd.DataFrame(table)
    else:
        raise gr.Error("Please enter text in inputbox!!!!")
    
"""
Save generated details
"""
def save_data_and_sendmail(article,results_dict,sen_list,results):
    try:
     
        ip_address= getIP()
        print(ip_address)
        location = get_location(ip_address)
        print(location)
        
        add_csv = [article,results_dict,ip_address,location]
        with open(DATA_FILE, "a") as f:
            writer = csv.writer(f)
            # write the data
            writer.writerow(add_csv)
            commit_url = repo.push_to_hub()
            print("commit data   :",commit_url)
    
        url = 'https://pragnakalpdev33.pythonanywhere.com/HF_space_emotion_detection_demo'
        # url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_emotion_detection'
        
        myobj = {"sentences":sen_list,"gen_results":results,"ip_addr":ip_address,'loc':location}
        response = requests.post(url, json = myobj)
        print("response=-----=",response.status_code)
   
    except Exception as e:
        return "Error while sending mail" + str(e)
        
    return "Successfully save data"
    
"""
UI design for demo using gradio app
"""
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=3, label="Sentences",elem_id="inp_div")
outputs = [gr.Dataframe(row_count = (3, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"],wrap=True)]

demo = gr.Interface(
    generate_emotion,
    inputs,
    outputs,
    title="Emotion Detection",
    css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}",
    article="""<p style='text-align: center;'>Provide us your <a href="https://www.pragnakalp.com/contact/" target="_blank">feedback</a> on this demo and feel free 
            to contact us at <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> if you want to have your own Emotion Detection system. 
            We will be happy to serve you for your requirement. And don't forget to check out more interesting 
            <a href="https://www.pragnakalp.com/services/natural-language-processing-services/" target="_blank">NLP services</a> we are offering.</p>
            <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>"""
)
demo.launch()