Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import DiffusionPipeline | |
import random | |
import uuid | |
from typing import Tuple | |
import numpy as np | |
DESCRIPTIONz = """## FLUX REALPIX 🔥""" | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
MAX_SEED = np.iinfo(np.int32).max | |
if not torch.cuda.is_available(): | |
DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>" | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
lora_repo = "prithivMLmods/Canopus-LoRA-Flux-FaceRealism" | |
trigger_word = "realism" # Leave trigger_word blank if not used. | |
pipe.load_lora_weights(lora_repo) | |
pipe.to("cuda") | |
style_list = [ | |
{ | |
"name": "3840 x 2160", | |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
}, | |
{ | |
"name": "2560 x 1440", | |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
}, | |
{ | |
"name": "HD+", | |
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", | |
}, | |
{ | |
"name": "Style Zero", | |
"prompt": "{prompt}", | |
}, | |
] | |
styles = {k["name"]: k["prompt"] for k in style_list} | |
DEFAULT_STYLE_NAME = "3840 x 2160" | |
STYLE_NAMES = list(styles.keys()) | |
def apply_style(style_name: str, positive: str) -> str: | |
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive) | |
def generate( | |
prompt: str, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3, | |
randomize_seed: bool = False, | |
style_name: str = DEFAULT_STYLE_NAME, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
positive_prompt = apply_style(style_name, prompt) | |
if trigger_word: | |
positive_prompt = f"{trigger_word} {positive_prompt}" | |
images = pipe( | |
prompt=positive_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=16, | |
num_images_per_prompt=1, | |
output_type="pil", | |
).images | |
image_paths = [save_image(img) for img in images] | |
print(image_paths) | |
return image_paths, seed | |
def load_predefined_images(): | |
predefined_images = [ | |
"assets/11.png", | |
"assets/22.png", | |
"assets/33.png", | |
"assets/44.png", | |
"assets/55.webp", | |
"assets/66.png", | |
"assets/77.png", | |
"assets/88.png", | |
"assets/99.png", | |
] | |
return predefined_images | |
examples = [ | |
"A portrait of an attractive woman in her late twenties with light brown hair and purple, wearing large a yellow sweater. She is looking directly at the camera, standing outdoors near trees.. --ar 128:85 --v 6.0 --style raw", | |
"A photo of the model wearing a white bodysuit and beige trench coat, posing in front of a train station with hands on head, soft light, sunset, fashion photography, high resolution, 35mm lens, f/22, natural lighting, global illumination. --ar 85:128 --v 6.0 --style raw", | |
] | |
css = ''' | |
.gradio-container{max-width: 575px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
@keyframes snow-fall { | |
0% { top: -10px; } | |
100% { top: 100%; } | |
} | |
.snowflake { | |
position: fixed; | |
top: -10px; | |
width: 10px; | |
height: 10px; | |
background: #00f; | |
border-radius: 50%; | |
opacity: 0.8; | |
pointer-events: none; | |
animation: snow-fall linear infinite; | |
} | |
.snowfall { | |
position: fixed; | |
top: 0; | |
left: 0; | |
width: 100%; | |
height: 100%; | |
pointer-events: none; | |
} | |
''' | |
# Add this JavaScript to generate snowfall effect | |
javascript = """ | |
function createSnowflakes() { | |
const snowflakeCount = 50; | |
const snowfallContainer = document.createElement('div'); | |
snowfallContainer.classList.add('snowfall'); | |
document.body.appendChild(snowfallContainer); | |
for (let i = 0; i < snowflakeCount; i++) { | |
const snowflake = document.createElement('div'); | |
snowflake.classList.add('snowflake'); | |
snowflake.style.left = `${Math.random() * 100}%`; | |
snowflake.style.animationDuration = `${Math.random() * 3 + 2}s`; | |
snowflake.style.animationDelay = `${Math.random() * 2}s`; | |
snowfallContainer.appendChild(snowflake); | |
} | |
} | |
document.addEventListener('DOMContentLoaded', createSnowflakes); | |
""" | |
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
gr.Markdown(DESCRIPTIONz) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt with realism tag!", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) | |
with gr.Accordion("Advanced options", open=False, visible=True): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=64, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=64, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20.0, | |
step=0.1, | |
value=3.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=40, | |
step=1, | |
value=16, | |
) | |
style_selection = gr.Radio( | |
show_label=True, | |
container=True, | |
interactive=True, | |
choices=STYLE_NAMES, | |
value=DEFAULT_STYLE_NAME, | |
label="Quality Style", | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=generate, | |
cache_examples=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
style_selection, | |
], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
gr.Markdown("### Generated Images") | |
predefined_gallery = gr.Gallery(label="Generated Images", columns=3, show_label=False, value=load_predefined_images()) | |
gr.Markdown("**Disclaimer/Note:**") | |
gr.Markdown("🔥This space provides realistic image generation, which works better for human faces and portraits. Realistic trigger works properly, better for photorealistic trigger words, close-up shots, face diffusion, male, female characters.") | |
gr.Markdown("🔥users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.") | |
# Include the JavaScript for snowfall effect | |
gr.HTML(f"<script>{javascript}</script>") | |
if __name__ == "__main__": | |
demo.queue(max_size=40).launch() |