Spaces:
Running
Running
import cv2 | |
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
from huggingface_hub.keras_mixin import from_pretrained_keras | |
from PIL import Image | |
import utils | |
_RESOLUTION = 224 | |
def get_model() -> tf.keras.Model: | |
"""Initiates a tf.keras.Model from HF Hub.""" | |
inputs = tf.keras.Input((_RESOLUTION, _RESOLUTION, 3)) | |
hub_module = from_pretrained_keras( | |
"probing-vits/cait_xxs24_224_classification" | |
) | |
logits, sa_atn_score_dict, ca_atn_score_dict = hub_module( | |
inputs, training=False | |
) | |
return tf.keras.Model( | |
inputs, [logits, sa_atn_score_dict, ca_atn_score_dict] | |
) | |
_MODEL = get_model() | |
def show_plot(image): | |
"""Function to be called when user hits submit on the UI.""" | |
original_image, preprocessed_image = utils.preprocess_image( | |
image, _RESOLUTION | |
) | |
_, _, ca_atn_score_dict = _MODEL.predict(preprocessed_image) | |
# Compute the saliency map and superimpose. | |
result_first_block = utils.get_cls_attention_map( | |
image, ca_atn_score_dict, block_key="ca_ffn_block_0_att" | |
) | |
heatmap = cv2.applyColorMap( | |
np.uint8(255 * result_first_block), cv2.COLORMAP_CIVIDIS | |
) | |
heatmap = np.float32(heatmap) / 255 | |
original_image = original_image / 255.0 | |
saliency_map = heatmap + original_image | |
saliency_map = saliency_map / np.max(saliency_map) | |
return Image.fromarray(saliency_map) | |
title = "Generate Class Saliency Plots" | |
article = "Class saliency maps as investigated in [Going deeper with Image Transformers](https://arxiv.org/abs/2103.17239) (Touvron et al.)." | |
iface = gr.Interface( | |
show_plot, | |
inputs=gr.inputs.Image(type="pil", label="Input Image"), | |
outputs="image", | |
title=title, | |
article=article, | |
allow_flagging="never", | |
examples=[["./butterfly.jpg"]], | |
) | |
iface.launch() | |