File size: 7,733 Bytes
b1b6ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3634025
b1b6ed6
 
3634025
b1b6ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07a2125
b1b6ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
from pathlib import Path

import pandas as pd

from src.model_list import MODEL_MAPPING, MODEL_SHORT_TO_LONG, get_all_model_list
from src.utils import process_kernels, process_quantizations

COLUMNS_MAPPING = {
    "config.name": "Experiment πŸ§ͺ",
    "config.backend.model": "Model πŸ€—",
    # primary measurements
    "report.prefill.latency.p50": "Prefill (s)",
    "report.per_token.latency.p50": "Per Token (s)",
    "report.decode.throughput.value": "Decode (tokens/s)",
    "report.decode.efficiency.value": "Energy (tokens/kWh)",
    "report.decode.memory.max_allocated": "Memory (MB)",
    # deployment settings
    "config.backend.name": "Backend 🏭",
    "config.backend.torch_dtype": "Precision πŸ“₯",
    "quantization": "Quantization πŸ—œοΈ",
    "attention": "Attention πŸ‘οΈ",
    "kernel": "Kernel βš›οΈ",
    # additional information
    "architecture": "Architecture πŸ›οΈ",
    "prefill+decode": "End-to-End (s)",
    "Average ⬆️": "Open LLM Score (%)",
    "#Params (B)": "Params (B)",
}
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
SORTING_ASCENDING = [False, True, False]

BGB_SORTING_COLUMNS = ["Average"]

# Use the above capabilities to create the columns
BGB_COLUMNS_MAPPING = {
    "model_name_or_path": "Model πŸ€—",
    "model_params": "Model Params (B)",
    "model_type": "Model Type",
    "average": "Average",
    "grounding": "Grounding ⚑️",
    "instruction_following": "Instruction Following πŸ“",
    "planning": "Planning πŸ“…",
    "reasoning": "Reasoning πŸ’‘",
    "refinement": "Refinement πŸ”©",
    "safety": "Safety ⚠️",
    "theory_of_mind": "Theory of Mind πŸ€”",
    "tool_usage": "Tool Usage πŸ› οΈ",
    "multilingual": "Multilingual πŸ‡¬πŸ‡«",
}


def get_raw_llm_perf_df(machine: str = "1xA10"):
    dfs = []
    for subset in SUBSETS:
        try:
            dfs.append(
                pd.read_csv(f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv")
            )
        except Exception:
            print(f"Subset {subset} for machine {machine} not found")

    perf_df = pd.concat(dfs)
    llm_df = pd.read_csv("hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv")

    llm_perf_df = pd.merge(llm_df, perf_df, left_on="Model", right_on="config.backend.model")

    return llm_perf_df


def processed_llm_perf_df(llm_perf_df):
    # some assertions
    assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1
    assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1
    assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1
    assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1
    # fix couple stuff
    llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True)
    llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace("flash_attention_2", "fa2")
    llm_perf_df["prefill+decode"] = llm_perf_df["report.prefill.latency.p50"] + (
        llm_perf_df["report.decode.latency.p50"]
    )
    # llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply(
    #     process_architectures
    # )
    llm_perf_df["architecture"] = llm_perf_df["Architecture"]
    llm_perf_df["attention"] = (
        llm_perf_df["config.backend.attn_implementation"]
        .str.replace("flash_attention_2", "FAv2")
        .str.replace("eager", "Eager")
        .str.replace("sdpa", "SDPA")
    )
    llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1)
    llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1)
    # round numerical columns
    llm_perf_df = llm_perf_df.round(
        {
            "report.prefill.latency.p50": 3,
            "report.decode.latency.p50": 3,
            "report.decode.throughput.value": 3,
            "report.decode.efficiency.value": 3,
            "report.decode.memory.max_allocated": 3,
            "Average ⬆️": 3,
            "prefill+decode": 3,
            "#Params (B)": 3,
        }
    )
    # filter columns
    llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())]
    # rename columns
    llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True)
    # sort by metric
    llm_perf_df.sort_values(
        by=SORTING_COLUMNS,
        ascending=SORTING_ASCENDING,
        inplace=True,
    )

    return llm_perf_df


def get_llm_perf_df(machine: str = "1xA10"):
    if os.path.exists(f"llm-perf-leaderboard-{machine}.csv"):
        llm_perf_df = pd.read_csv(f"llm-perf-leaderboard-{machine}.csv")
    else:
        llm_perf_df = get_raw_llm_perf_df(machine)
        llm_perf_df = processed_llm_perf_df(llm_perf_df)
        llm_perf_df.to_csv(f"llm-perf-leaderboard-{machine}.csv", index=False)

    return llm_perf_df


def get_eval_df(eval_model_name: str):

    assert eval_model_name in ["gpt-4-turbo-2024-04-09", "prometheus-bgb-8x7b-v2.0"]

    base_dir = Path(__file__).parent.parent / "data"
    filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.pkl"
    # For debugging
    csv_filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.csv"

    def change_model_name(model_name: str):
        # TODO: Hard code models with different names
        model_name_or_path = MODEL_SHORT_TO_LONG.get(model_name, model_name)
        if model_name == "qwen/qwen-110b-chat":
            model_name_or_path = "Qwen/Qwen1.5-110B-Chat"

        if model_name_or_path.endswith("-hjpark"):
            model_name_or_path = model_name_or_path.replace("-hjpark", "")

        return model_name_or_path

    if os.path.exists(filepath) and False:
        eval_df = pd.read_pickle(filepath)
    else:
        # Process the df
        raw_filepath = base_dir / f"eval_by_{eval_model_name}.csv"
        eval_df = pd.read_csv(raw_filepath)

        eval_df["model_name_or_path"] = eval_df["model_name"].apply(lambda x: change_model_name(x))
        eval_df.drop(columns=["model_name"], inplace=True)

        eval_df["model_params"] = eval_df["model_name_or_path"].apply(
            lambda x: MODEL_MAPPING.get(x, [None, "Unknown"])[0]
        )
        eval_df["model_type"] = eval_df["model_name_or_path"].apply(
            lambda x: MODEL_MAPPING.get(x, [None, "Unknown"])[1]
        )

        capabilities = [
            "grounding",
            "instruction_following",
            "planning",
            "reasoning",
            "refinement",
            "safety",
            "theory_of_mind",
            "tool_usage",
            "multilingual",
        ]

        # Make the average of the capabilities
        eval_df["average"] = eval_df[capabilities[:-1]].mean(axis=1)

        # Round to 3 decimal places for capabilities and average
        eval_df = eval_df.round(
            {
                "average": 3,
                "grounding": 3,
                "instruction_following": 3,
                "planning": 3,
                "reasoning": 3,
                "refinement": 3,
                "safety": 3,
                "theory_of_mind": 3,
                "tool_usage": 3,
                "multilingual": 3,
            }
        )

        # print(eval_df[eval_df['model_params'] == 'Unknown'])
        eval_df.rename(columns=BGB_COLUMNS_MAPPING, inplace=True)

        eval_df.sort_values(
            by=BGB_SORTING_COLUMNS,
            ascending=False,
            inplace=True,
        )

        eval_df.to_pickle(str(filepath))
        eval_df.to_csv(str(csv_filepath), index=False)
    # import pdb; pdb.set_trace()

    return eval_df


if __name__ == "__main__":
    get_eval_df("gpt-4-turbo-2024-04-09")
    get_eval_df("prometheus-bgb-8x7b-v2.0")