File size: 7,733 Bytes
b1b6ed6 3634025 b1b6ed6 3634025 b1b6ed6 07a2125 b1b6ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
from pathlib import Path
import pandas as pd
from src.model_list import MODEL_MAPPING, MODEL_SHORT_TO_LONG, get_all_model_list
from src.utils import process_kernels, process_quantizations
COLUMNS_MAPPING = {
"config.name": "Experiment π§ͺ",
"config.backend.model": "Model π€",
# primary measurements
"report.prefill.latency.p50": "Prefill (s)",
"report.per_token.latency.p50": "Per Token (s)",
"report.decode.throughput.value": "Decode (tokens/s)",
"report.decode.efficiency.value": "Energy (tokens/kWh)",
"report.decode.memory.max_allocated": "Memory (MB)",
# deployment settings
"config.backend.name": "Backend π",
"config.backend.torch_dtype": "Precision π₯",
"quantization": "Quantization ποΈ",
"attention": "Attention ποΈ",
"kernel": "Kernel βοΈ",
# additional information
"architecture": "Architecture ποΈ",
"prefill+decode": "End-to-End (s)",
"Average β¬οΈ": "Open LLM Score (%)",
"#Params (B)": "Params (B)",
}
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
SORTING_ASCENDING = [False, True, False]
BGB_SORTING_COLUMNS = ["Average"]
# Use the above capabilities to create the columns
BGB_COLUMNS_MAPPING = {
"model_name_or_path": "Model π€",
"model_params": "Model Params (B)",
"model_type": "Model Type",
"average": "Average",
"grounding": "Grounding β‘οΈ",
"instruction_following": "Instruction Following π",
"planning": "Planning π
",
"reasoning": "Reasoning π‘",
"refinement": "Refinement π©",
"safety": "Safety β οΈ",
"theory_of_mind": "Theory of Mind π€",
"tool_usage": "Tool Usage π οΈ",
"multilingual": "Multilingual π¬π«",
}
def get_raw_llm_perf_df(machine: str = "1xA10"):
dfs = []
for subset in SUBSETS:
try:
dfs.append(
pd.read_csv(f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv")
)
except Exception:
print(f"Subset {subset} for machine {machine} not found")
perf_df = pd.concat(dfs)
llm_df = pd.read_csv("hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv")
llm_perf_df = pd.merge(llm_df, perf_df, left_on="Model", right_on="config.backend.model")
return llm_perf_df
def processed_llm_perf_df(llm_perf_df):
# some assertions
assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1
assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1
assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1
assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1
# fix couple stuff
llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True)
llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace("flash_attention_2", "fa2")
llm_perf_df["prefill+decode"] = llm_perf_df["report.prefill.latency.p50"] + (
llm_perf_df["report.decode.latency.p50"]
)
# llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply(
# process_architectures
# )
llm_perf_df["architecture"] = llm_perf_df["Architecture"]
llm_perf_df["attention"] = (
llm_perf_df["config.backend.attn_implementation"]
.str.replace("flash_attention_2", "FAv2")
.str.replace("eager", "Eager")
.str.replace("sdpa", "SDPA")
)
llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1)
llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1)
# round numerical columns
llm_perf_df = llm_perf_df.round(
{
"report.prefill.latency.p50": 3,
"report.decode.latency.p50": 3,
"report.decode.throughput.value": 3,
"report.decode.efficiency.value": 3,
"report.decode.memory.max_allocated": 3,
"Average β¬οΈ": 3,
"prefill+decode": 3,
"#Params (B)": 3,
}
)
# filter columns
llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())]
# rename columns
llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True)
# sort by metric
llm_perf_df.sort_values(
by=SORTING_COLUMNS,
ascending=SORTING_ASCENDING,
inplace=True,
)
return llm_perf_df
def get_llm_perf_df(machine: str = "1xA10"):
if os.path.exists(f"llm-perf-leaderboard-{machine}.csv"):
llm_perf_df = pd.read_csv(f"llm-perf-leaderboard-{machine}.csv")
else:
llm_perf_df = get_raw_llm_perf_df(machine)
llm_perf_df = processed_llm_perf_df(llm_perf_df)
llm_perf_df.to_csv(f"llm-perf-leaderboard-{machine}.csv", index=False)
return llm_perf_df
def get_eval_df(eval_model_name: str):
assert eval_model_name in ["gpt-4-turbo-2024-04-09", "prometheus-bgb-8x7b-v2.0"]
base_dir = Path(__file__).parent.parent / "data"
filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.pkl"
# For debugging
csv_filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.csv"
def change_model_name(model_name: str):
# TODO: Hard code models with different names
model_name_or_path = MODEL_SHORT_TO_LONG.get(model_name, model_name)
if model_name == "qwen/qwen-110b-chat":
model_name_or_path = "Qwen/Qwen1.5-110B-Chat"
if model_name_or_path.endswith("-hjpark"):
model_name_or_path = model_name_or_path.replace("-hjpark", "")
return model_name_or_path
if os.path.exists(filepath) and False:
eval_df = pd.read_pickle(filepath)
else:
# Process the df
raw_filepath = base_dir / f"eval_by_{eval_model_name}.csv"
eval_df = pd.read_csv(raw_filepath)
eval_df["model_name_or_path"] = eval_df["model_name"].apply(lambda x: change_model_name(x))
eval_df.drop(columns=["model_name"], inplace=True)
eval_df["model_params"] = eval_df["model_name_or_path"].apply(
lambda x: MODEL_MAPPING.get(x, [None, "Unknown"])[0]
)
eval_df["model_type"] = eval_df["model_name_or_path"].apply(
lambda x: MODEL_MAPPING.get(x, [None, "Unknown"])[1]
)
capabilities = [
"grounding",
"instruction_following",
"planning",
"reasoning",
"refinement",
"safety",
"theory_of_mind",
"tool_usage",
"multilingual",
]
# Make the average of the capabilities
eval_df["average"] = eval_df[capabilities[:-1]].mean(axis=1)
# Round to 3 decimal places for capabilities and average
eval_df = eval_df.round(
{
"average": 3,
"grounding": 3,
"instruction_following": 3,
"planning": 3,
"reasoning": 3,
"refinement": 3,
"safety": 3,
"theory_of_mind": 3,
"tool_usage": 3,
"multilingual": 3,
}
)
# print(eval_df[eval_df['model_params'] == 'Unknown'])
eval_df.rename(columns=BGB_COLUMNS_MAPPING, inplace=True)
eval_df.sort_values(
by=BGB_SORTING_COLUMNS,
ascending=False,
inplace=True,
)
eval_df.to_pickle(str(filepath))
eval_df.to_csv(str(csv_filepath), index=False)
# import pdb; pdb.set_trace()
return eval_df
if __name__ == "__main__":
get_eval_df("gpt-4-turbo-2024-04-09")
get_eval_df("prometheus-bgb-8x7b-v2.0")
|