File size: 1,753 Bytes
b1b6ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from src.leaderboard import BGB_COLUMN_MAPPING, get_bgb_leaderboard_df, get_leaderboard_df
from src.llm_perf import get_eval_df, get_llm_perf_df
def select_columns_fn(machine, columns, search, llm_perf_df=None):
if llm_perf_df is None:
llm_perf_df = get_llm_perf_df(machine=machine)
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
selected_leaderboard_df = selected_leaderboard_df[
selected_leaderboard_df["Model 🤗"].str.contains(search, case=False)
]
selected_leaderboard_df = selected_leaderboard_df[columns]
return selected_leaderboard_df
def select_columns_bgb_fn(machine, columns, search, type_checkboxes, param_slider, eval_df=None):
if eval_df is None:
eval_df = get_eval_df(machine)
selected_leaderboard_df = get_bgb_leaderboard_df(eval_df)
selected_leaderboard_df = selected_leaderboard_df[
selected_leaderboard_df["Model 🤗"].str.contains(search, case=False)
]
print(param_slider)
import pdb
pdb.set_trace()
columns = ["Model 🤗"] + columns + type_checkboxes
return selected_leaderboard_df[columns]
def create_select_callback(
# fixed
machine_textbox,
# interactive
columns_checkboxes,
search_bar,
type_checkboxes,
param_slider,
# outputs
leaderboard_table,
):
columns_checkboxes.change(
fn=select_columns_bgb_fn,
inputs=[machine_textbox, columns_checkboxes, search_bar, type_checkboxes, param_slider],
outputs=[leaderboard_table],
)
search_bar.change(
fn=select_columns_bgb_fn,
inputs=[machine_textbox, columns_checkboxes, search_bar, type_checkboxes, param_slider],
outputs=[leaderboard_table],
)
|