AntonioMS's picture
Upload test version
91e1c8c
raw
history blame
3.21 kB
import tempfile
from typing import Optional
from TTS.config import load_config
import gradio as gr
import numpy as np
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
MODELS = {}
SPEAKERS = {}
MAX_TXT_LEN = 100
manager = ModelManager()
MODEL_NAMES = manager.list_tts_models()
# filter out multi-speaker models and slow wavegrad vocoders
filters = ["vctk", "your_tts", "ek1"]
MODEL_NAMES = [model_name for model_name in MODEL_NAMES if not any(f in model_name for f in filters)]
EN = [el for el in MODEL_NAMES if "/en/" in el]
OTHER = [el for el in MODEL_NAMES if "/en/" not in el]
EN[0], EN[5] = EN[5], EN[0]
MODEL_NAMES = EN + OTHER
# reorder models
print(MODEL_NAMES)
def tts(text: str, model_name: str):
if len(text) > MAX_TXT_LEN:
text = text[:MAX_TXT_LEN]
print(f"Input text was cutoff since it went over the {MAX_TXT_LEN} character limit.")
print(text, model_name)
# download model
model_path, config_path, model_item = manager.download_model(model_name)
vocoder_name: Optional[str] = model_item["default_vocoder"]
# download vocoder
vocoder_path = None
vocoder_config_path = None
if vocoder_name is not None:
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name)
# init synthesizer
synthesizer = Synthesizer(
model_path, config_path, None, None, vocoder_path, vocoder_config_path,
)
# synthesize
if synthesizer is None:
raise NameError("model not found")
wavs = synthesizer.tts(text, None)
# return output
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
synthesizer.save_wav(wavs, fp)
return fp.name
title = """<h1 align="center">馃惛馃挰 CoquiTTS Playground </h1>"""
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
## <img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;">
"""
)
gr.Markdown(
"""
<br/>
馃捇 Este space mostra alg煤ns dos modelos TTS desenvolvidos polo **[Proxecto N贸s](https://huggingface.co/proxectonos)**.
<br/>
"""
)
with gr.Row():
with gr.Column():
input_text = gr.inputs.Textbox(
label="Input Text",
default="This sentence has been generated by a speech synthesis system.",
)
model_select = gr.inputs.Dropdown(
label="Pick Model: tts_models/<language>/<dataset>/<model_name>",
choices=MODEL_NAMES,
default="tts_models/en/jenny/jenny"
)
tts_button = gr.Button("Send", elem_id="send-btn", visible=True)
with gr.Column():
output_audio = gr.outputs.Audio(label="Output", type="filepath")
tts_button.click(
tts,
inputs=[
input_text,
model_select,
],
outputs=[output_audio],
)
demo.queue(concurrency_count=16).launch(debug=True)