Spaces:
Runtime error
Runtime error
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM | |
from peft import PeftModel, PeftConfig | |
import torch | |
import gradio as gr | |
import random | |
from textwrap import wrap | |
# Functions to Wrap the Prompt Correctly | |
def wrap_text(text, width=90): | |
lines = text.split('\n') | |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"): | |
# Combine user input and system prompt | |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]" | |
# Encode the input text | |
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False) | |
model_inputs = encodeds.to(device) | |
# Generate a response using the model | |
output = model.generate( | |
**model_inputs, | |
max_length=max_length, | |
use_cache=True, | |
early_stopping=True, | |
bos_token_id=model.config.bos_token_id, | |
eos_token_id=model.config.eos_token_id, | |
pad_token_id=model.config.eos_token_id, | |
temperature=0.1, | |
do_sample=True | |
) | |
# Decode the response | |
response_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response_text | |
# Define the device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Use the base model's ID | |
base_model_id = "HuggingFaceH4/zephyr-7b-beta" | |
model_directory = "pseudolab/K23_MiniMed" | |
# Instantiate the Tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True, padding_side="left") | |
# tokenizer = AutoTokenizer.from_pretrained("pseudolab/K23_MiniMed", trust_remote_code=True, padding_side="left") | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = 'left' | |
# Specify the configuration class for the model | |
#model_config = AutoConfig.from_pretrained(base_model_id) | |
# Load the PEFT model with the specified configuration | |
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config) | |
# Load the PEFT model | |
peft_config = PeftConfig.from_pretrained("pseudolab/K23_MiniMed") | |
peft_model = MistralForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True) | |
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed") | |
class ChatBot: | |
def __init__(self): | |
self.history = [] | |
class ChatBot: | |
def __init__(self): | |
# Initialize the ChatBot class with an empty history | |
self.history = [] | |
def predict(self, user_input, system_prompt="You are an expert medical analyst:"): | |
# Combine the user's input with the system prompt | |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]" | |
# Encode the formatted input using the tokenizer | |
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt") | |
# Generate a response using the PEFT model | |
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) | |
# Decode the generated response to text | |
response_text = tokenizer.decode(response[0], skip_special_tokens=True) | |
return response_text # Return the generated response | |
bot = ChatBot() | |
title = "👋🏻토닉의 미스트랄메드 채팅에 오신 것을 환영합니다🚀👋🏻Welcome to Tonic's MistralMed Chat🚀" | |
description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [pseudolab/K23_MiniMed](https://huggingface.co/pseudolab/K23_MiniMed) 또는 이 공간을 복제하고 로컬 또는 🤗HuggingFace에서 사용할 수 있습니다. [Discord에서 함께 만들기 위해 Discord에 가입하십시오](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [pseudolab/K23_MiniMed](https://huggingface.co/pseudolab/K23_MiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." | |
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]] | |
iface = gr.Interface( | |
fn=bot.predict, | |
title=title, | |
description=description, | |
examples=examples, | |
inputs=["text", "text"], # Take user input and system prompt separately | |
outputs="text", | |
theme="pseudolab/huggingface-korea-theme" | |
) | |
iface.launch() |