File size: 7,909 Bytes
f18cdf1
7e0dde7
f18cdf1
 
 
 
 
 
 
e414859
2b1a300
 
 
 
 
 
e414859
 
2b1a300
 
 
 
 
 
 
f18cdf1
 
 
 
 
 
7e0dde7
 
f18cdf1
 
e414859
 
 
 
 
 
 
 
 
 
 
f18cdf1
 
 
 
 
 
 
 
e414859
2b1a300
2b8c4c9
 
 
 
2b1a300
f18cdf1
 
 
 
2b8c4c9
f18cdf1
e414859
 
2b8c4c9
 
 
2b1a300
e414859
 
 
 
 
 
 
 
 
 
 
 
 
2b1a300
e414859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1a300
e414859
 
2b8c4c9
2b1a300
e414859
 
 
 
 
 
 
 
 
2b1a300
e414859
 
 
 
 
 
 
2b1a300
e414859
 
2b1a300
e414859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1a300
 
 
e414859
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1a300
e414859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1a300
 
 
e414859
2b1a300
e414859
 
7e0dde7
e414859
 
 
 
 
 
 
 
 
2b1a300
 
 
 
 
e414859
2b1a300
 
 
 
 
 
 
 
7e0dde7
 
2b1a300
 
e414859
 
2b1a300
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
aggregate.py - module for aggregating text from multiple sources/multiple parts of a single source.
    Primary usage is through the BatchAggregator class.

How it works:
1. We tell the language model to do it.
2. The language model does it.
3. Yaay!
"""
import pprint as pp
import logging
import time

import torch
from transformers import GenerationConfig, pipeline

from utils import compare_model_size

# Setting up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)


class BatchAggregator:
    """
    BatchAggregator is a class for aggregating text from multiple sources.

    Usage:
    >>> from aggregate import BatchAggregator
    >>> aggregator = BatchAggregator()
    >>> agg = aggregator.infer_aggregate(["This is a test", "This is another test"])
    >>> print(agg)
    """

    GENERIC_CONFIG = GenerationConfig(
        num_beams=8,
        early_stopping=True,
        do_sample=False,
        min_new_tokens=32,
        max_new_tokens=256,
        repetition_penalty=1.1,
        length_penalty=1.4,
        no_repeat_ngram_size=4,
        encoder_no_repeat_ngram_size=5,
    )
    CONFIGURED_MODELS = [
        "pszemraj/bart-large-mnli-dolly_hhrlhf-v1",
        "pszemraj/bart-base-instruct-dolly_hhrlhf",
        "pszemraj/flan-t5-large-instruct-dolly_hhrlhf",
        "pszemraj/flan-t5-base-instruct-dolly_hhrlhf",
    ]  # these have generation configs defined for this task in their model repos

    DEFAULT_INSTRUCTION = "Write a comprehensive yet concise summary that pulls together the main points of the following text:"

    def __init__(
        self,
        model_name: str = "pszemraj/bart-large-mnli-dolly_hhrlhf-v1",
        force_cpu: bool = False,
        **kwargs,
    ):
        """
        __init__ initializes the BatchAggregator class.

        :param str model_name: model name to use, default: "pszemraj/bart-large-mnli-dolly_hhrlhf-v1"
        :param bool force_cpu: force the model to run on CPU, default: False
        """
        self.device = None
        self.is_compiled = False
        self.model_name = None
        self.aggregator = None
        self.force_cpu = force_cpu
        self.logger = logging.getLogger(__name__)
        self.init_model(model_name)

    def init_model(self, model_name: str) -> None:
        """
        Initialize the model.

        :param model_name: The name of the model to use.
        """
        # Free up memory
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        self.logger.info(f"Setting model to {model_name}")
        self.model_name = model_name
        self.aggregator = self._create_pipeline(model_name)
        self._configure_model()
        # update the generation config with the specific tokenizer
        tokenizer_params = {
            "decoder_start_token_id": 0
            if "t5" in model_name.lower()
            else self.aggregator.tokenizer.eos_token_id,
            "eos_token_id": 1
            if "t5" in model_name.lower()
            else self.aggregator.tokenizer.eos_token_id,
            "pad_token_id": 0
            if "t5" in model_name.lower()
            else self.aggregator.tokenizer.pad_token_id,
        }
        self.update_generation_config(**tokenizer_params)

    def _create_pipeline(
        self, model_name: str = "pszemraj/bart-large-mnli-dolly_hhrlhf-v1"
    ) -> pipeline:
        """
        _create_pipeline creates a pipeline for the model.

        :param str model_name: model name to use, default: "pszemraj/bart-large-mnli-dolly_hhrlhf-v1"
        :return pipeline: the pipeline for the model

        :raises Exception: if the pipeline cannot be created
        """
        self.device = 0 if torch.cuda.is_available() and not self.force_cpu else -1
        try:
            self.logger.info(
                f"Creating pipeline with model {model_name} on device {self.device}"
            )
            return pipeline(
                "text2text-generation",
                model_name,
                device=self.device,
                torch_dtype=torch.float32,
            )
        except Exception as e:
            self.logger.error(f"Failed to create pipeline: {e}")
            raise

    def _configure_model(self):
        """
        Configure the model for generation.
        """
        try:
            self.aggregator.model = torch.compile(self.aggregator.model)
            self.is_compiled = True
        except Exception as e:
            self.logger.warning(f"Could not compile model with Torch 2.0: {e}")

        if self.model_name not in self.CONFIGURED_MODELS:
            self.logger.info("Setting generation config to general defaults")
            self._set_default_generation_config()
        else:
            try:
                self.logger.info("Loading generation config from hub")
                self.aggregator.model.generation_config = (
                    GenerationConfig.from_pretrained(self.model_name)
                )
            except Exception as e:
                self.logger.warning(
                    f"Could not load generation config, using defaults: {e}"
                )
                self._set_default_generation_config()

        self.logger.info(self.aggregator.model.generation_config.to_json_string())

    def _set_default_generation_config(self):
        """
        Set the default generation configuration for the model.
        """
        self.aggregator.model.generation_config = self.GENERIC_CONFIG

        if (
            "large"
            or "xl" in self.model_name.lower()
            or compare_model_size(self.model_name, 500)
        ):
            upd = {"num_beams": 4}
            self.update_generation_config(**upd)

    def update_generation_config(self, **kwargs):
        """
        Update the generation configuration with the specified parameters.

        Args:
            **kwargs: The parameters to update in the generation configuration.
        """
        self.logger.info(f"Updating generation config with {pp.pformat(kwargs)}")

        self.aggregator.model.generation_config.update(**kwargs)

    def update_loglevel(self, level: str = "INFO"):
        """
        Update the log level.

        Args:
            level (str): The log level to set. Defaults to "INFO".
        """
        self.logger.setLevel(level)

    def infer_aggregate(
        self,
        text_list: list,
        instruction: str = DEFAULT_INSTRUCTION,
        **kwargs,
    ) -> str:
        f"""
        infer_aggregate - infers a consolidated summary from a list of texts.

        Args:
            text_list (list): The texts to summarize.
            instruction (str): The instruction for the summary. Defaults to {self.DEFAULT_INSTRUCTION}.
            **kwargs: Additional parameters to update in the generation configuration.

        Returns:
            The generated summary.
        """
        joined_text = "\n".join(text_list)
        prompt = f"{instruction}\n\n{joined_text}\n"
        if kwargs:
            self.update_generation_config(**kwargs)
        st = time.perf_counter()
        self.logger.info(f"inference on {len(text_list)} texts ...")
        result = self.aggregator(
            prompt,
            generation_config=self.aggregator.model.generation_config,
        )[0]["generated_text"]
        self.logger.info(f"Done. runtime:\t{round(time.perf_counter() - st, 2)}s")
        self.logger.info(
            f"Input tokens:\t{self.count_tokens(prompt)}. Output tokens:\t{self.count_tokens(result)}"
        )
        self.logger.debug(f"Generated text:\n{result}")

        return result

    def count_tokens(self, text: str) -> int:
        """count the number of tokens in a text"""
        return (
            len(self.aggregator.tokenizer.encode(text, truncation=False, padding=False))
            if text
            else 0
        )