Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,634 Bytes
fe0e9af 904400a 8dbbc84 53cfd2d fe0e9af c0a9b19 fe0e9af 66e7228 fe0e9af 98a3ea7 fe0e9af 9b3e02d fe0e9af 7a2e137 fe0e9af b9e8529 3247bd6 fe0e9af 53cfd2d fe0e9af 98a3ea7 fe0e9af f4f4797 8dbbc84 fe0e9af f4f4797 fe0e9af f4f4797 98a3ea7 66e7228 ecba037 3b66adc fe0e9af ecba037 af3c92a 7a2e137 fe0e9af b1e0e58 53cfd2d fe0e9af 7dcd8f3 fe0e9af 66e7228 fe0e9af 66e7228 98a3ea7 8dbbc84 e59ac21 fe0e9af 24e11fd 98a3ea7 24e11fd df69f18 dd63c17 3b66adc fe0e9af b2df366 fe0e9af 50085ad afa6ede ecba037 afa6ede ecba037 66e7228 fe0e9af 3ca941f fe0e9af 8dbbc84 c0a9b19 3ca941f 3b66adc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import logging
import re
from pathlib import Path
import time
import gradio as gr
import nltk
from cleantext import clean
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_examples, truncate_word_count
_here = Path(__file__).parent
nltk.download("stopwords") # TODO=find where this requirement originates from
import transformers
transformers.logging.set_verbosity_error()
logging.basicConfig()
def proc_submission(
input_text: str,
model_size: str,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
max_input_length: int = 768,
):
"""
proc_submission - a helper function for the gradio module
Parameters
----------
input_text : str, required, the text to be processed
max_input_length : int, optional, the maximum length of the input text, default=512
Returns
-------
str of HTML, the interactive HTML form for the model
"""
settings = {
"length_penalty": length_penalty,
"repetition_penalty": repetition_penalty,
"no_repeat_ngram_size": no_repeat_ngram_size,
"encoder_no_repeat_ngram_size": 4,
"num_beams": num_beams,
"min_length": 4,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
st = time.perf_counter()
history = {}
clean_text = clean(input_text, lower=False)
max_input_length = 1024 if model_size == "base" else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
_summaries = summarize_via_tokenbatches(
tr_in,
model_sm if model_size == "base" else model,
tokenizer_sm if model_size == "base" else tokenizer,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
sum_scores = [
f"\n - Section {i}: {round(s['summary_score'],4)}"
for i, s in enumerate(_summaries)
]
history["Summary Text"] = "<br>".join(sum_text)
history[
"Summary Scores"
] = "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better.<br><br>"
history["Summary Scores"] += "\n".join(sum_scores)
html = ""
rt = round((time.perf_counter() - st) / 60, 2)
print(f"Runtime: {rt} minutes")
html += f"<p>Runtime: {rt} minutes on CPU</p>"
for name, item in history.items():
html += (
f"<h2>{name}:</h2><hr><b>{item}</b><br><br>"
if "summary" not in name.lower()
else f"<h2>{name}:</h2><hr>{item}<br><br>"
)
html += ""
return html
if __name__ == "__main__":
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
title = "Long-Form Summarization: LED & BookSum"
description = "A simple demo of how to use a fine-tuned LED model to summarize long-form text. [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab."
gr.Interface(
proc_submission,
inputs=[
gr.inputs.Textbox(
lines=10,
label="input text",
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
),
gr.inputs.Radio(
choices=["base", "large"], label="model size", default="large"
),
gr.inputs.Slider(
minimum=2, maximum=4, label="num_beams", default=2, step=1
),
gr.inputs.Slider(
minimum=512,
maximum=1024,
label="token_batch_length",
default=512,
step=256,
),
gr.inputs.Slider(
minimum=0.5, maximum=1.1, label="length_penalty", default=0.7, step=0.05
),
gr.inputs.Slider(
minimum=1.0,
maximum=5.0,
label="repetition_penalty",
default=3.5,
step=0.1,
),
gr.inputs.Slider(
minimum=2, maximum=4, label="no_repeat_ngram_size", default=3, step=1
),
],
outputs="html",
examples_per_page=2,
title=title,
description=description,
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
examples=load_examples(_here / "examples"),
cache_examples=True,
).launch()
|