File size: 13,080 Bytes
0cef1e2
 
 
 
fe0e9af
9bc2923
 
53cfd2d
01d78f2
 
fe0e9af
 
0cef1e2
fe0e9af
 
 
01d78f2
fe0e9af
 
 
0cef1e2
fe0e9af
01d78f2
0cef1e2
01d78f2
fe0e9af
0cef1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e7228
fe0e9af
 
0cef1e2
 
 
 
 
 
 
fe0e9af
 
4dc1508
 
 
 
 
 
 
 
 
d3f22a6
0cef1e2
4dc1508
 
 
fe0e9af
 
0cef1e2
 
fe0e9af
aa3c57c
 
 
fe0e9af
aa3c57c
b9e8529
 
3247bd6
 
fe0e9af
0cef1e2
 
 
 
 
 
53cfd2d
fe0e9af
 
 
01d78f2
fe0e9af
0cef1e2
9bc2923
 
 
 
 
 
 
 
fe0e9af
 
 
0cef1e2
01d78f2
fe0e9af
3094ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cef1e2
 
 
 
66e7228
 
0cef1e2
 
 
3b66adc
0cef1e2
 
3b66adc
fe0e9af
42e4d6f
01d78f2
42e4d6f
b1e0e58
0cef1e2
01d78f2
53cfd2d
01d78f2
9bc2923
fe0e9af
 
 
01d78f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0e9af
edb05fc
4dc1508
 
 
 
 
f8734a4
4dc1508
 
 
 
 
11da24b
4dc1508
f8734a4
 
 
 
4dc1508
f8734a4
4dc1508
 
 
 
f8734a4
4dc1508
66e7228
edb05fc
fe0e9af
0cef1e2
 
01d78f2
 
0cef1e2
 
 
9bc2923
01d78f2
 
 
d3f22a6
01d78f2
 
 
 
d3f22a6
01d78f2
1bc0267
0cef1e2
 
 
 
1bc0267
 
 
93b2cca
1bc0267
 
0cef1e2
 
 
1bc0267
 
9bc2923
 
 
1bc0267
 
9bc2923
1bc0267
 
 
9bc2923
 
 
0cef1e2
 
9bc2923
 
b6fced7
9bc2923
 
 
 
 
875f311
01d78f2
 
4dc1508
 
 
1bc0267
bc946c2
 
 
01d78f2
 
 
 
 
 
 
 
 
 
 
 
 
9bc2923
 
 
 
 
0cef1e2
9bc2923
 
 
0cef1e2
9bc2923
 
 
 
 
 
 
875f311
9bc2923
0cef1e2
9bc2923
 
 
0cef1e2
9bc2923
 
 
 
 
 
 
01d78f2
9bc2923
01d78f2
 
 
0f6a079
0cef1e2
c2e071e
01d78f2
e950125
01d78f2
1a7303a
01d78f2
 
 
 
 
4dc1508
11da24b
4dc1508
 
01d78f2
 
 
 
0cef1e2
01d78f2
 
 
 
 
 
 
 
 
0cef1e2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
"""
app.py - the main application file for the gradio app
"""
import gc
import logging
import random
import re
import time
from pathlib import Path

import gradio as gr
import nltk
import torch
from cleantext import clean

from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count

_here = Path(__file__).parent

nltk.download("stopwords", quiet=True)

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - [%(levelname)s] %(name)s: %(message)s"
)

MODEL_OPTIONS = [
    "pszemraj/led-large-book-summary",
    "pszemraj/led-base-book-summary",
]


def predict(
    input_text: str,
    model_name: str,
    token_batch_length: int = 2048,
    empty_cache: bool = True,
    **settings,
) -> list:
    """
    predict - helper fn to support multiple models for summarization at once
    :param str input_text: the input text to summarize
    :param str model_name: model name to use
    :param int token_batch_length: the length of the token batches to use
    :param bool empty_cache: whether to empty the cache before loading a new= model
    :return: list of dicts with keys "summary" and "score"
    """
    if torch.cuda.is_available() and empty_cache:
        torch.cuda.empty_cache()

    model, tokenizer = load_model_and_tokenizer(model_name)
    summaries = summarize_via_tokenbatches(
        input_text,
        model,
        tokenizer,
        batch_length=token_batch_length,
        **settings,
    )

    del model
    del tokenizer
    gc.collect()

    return summaries


def proc_submission(
    input_text: str,
    model_name: str,
    num_beams: int,
    token_batch_length: int,
    length_penalty: float,
    repetition_penalty: float,
    no_repeat_ngram_size: int,
    max_input_length: int = 2560,
):
    """
    proc_submission - a helper function for the gradio module to process submissions

    Args:
        input_text (str): the input text to summarize
        model_size (str): the size of the model to use
        num_beams (int): the number of beams to use
        token_batch_length (int): the length of the token batches to use
        length_penalty (float): the length penalty to use
        repetition_penalty (float): the repetition penalty to use
        no_repeat_ngram_size (int): the no-repeat ngram size to use
        max_input_length (int, optional): the maximum input length to use. Defaults to 2560.

    Returns:
        str in HTML format, string of the summary, str of score
    """

    logger = logging.getLogger(__name__)
    logger.info("Processing submission")
    settings = {
        "length_penalty": float(length_penalty),
        "repetition_penalty": float(repetition_penalty),
        "no_repeat_ngram_size": int(no_repeat_ngram_size),
        "encoder_no_repeat_ngram_size": 4,
        "num_beams": int(num_beams),
        "min_length": 4,
        "max_length": int(token_batch_length // 4),
        "early_stopping": True,
        "do_sample": False,
    }

    if "base" in model_name:
        logger.info("Updating max_input_length to for base model")
        max_input_length = 4096

    logger.info(f"max_input_length: {max_input_length}")
    st = time.perf_counter()
    history = {}
    clean_text = clean(input_text, lower=False)
    processed = truncate_word_count(clean_text, max_input_length)

    if processed["was_truncated"]:
        truncated_input = processed["truncated_text"]
        # create elaborate HTML warning
        input_wc = re.split(r"\s+", input_text)
        msg = f"""
        <div style="background-color: #FFA500; color: white; padding: 20px;">
        <h3>Warning</h3>
        <p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
        </div>
        """
        logging.warning(msg)
        history["WARNING"] = msg
    else:
        truncated_input = input_text
        msg = None

    if len(input_text) < 50:
        # this is essentially a different case from the above
        msg = f"""
        <div style="background-color: #880808; color: white; padding: 20px;">
        <h3>Error</h3>
        <p>Input text is too short to summarize. Detected {len(input_text)} characters.
        Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p>
        </div>
        """
        logging.warning(msg)
        logging.warning("RETURNING EMPTY STRING")
        history["WARNING"] = msg

        return msg, "", []

    _summaries = predict(
        input_text=truncated_input,
        model_name=model_name,
        token_batch_length=token_batch_length,
        **settings,
    )
    sum_text = [
        f"\nBatch {i}:\n\t" + s["summary"][0] for i, s in enumerate(_summaries, start=1)
    ]
    sum_scores = [
        f"\n- Batch {i}:\n\t{round(s['summary_score'],4)}"
        for i, s in enumerate(_summaries, start=1)
    ]

    sum_text_out = "\n".join(sum_text)
    history["Summary Scores"] = "<br><br>"
    scores_out = "\n".join(sum_scores)
    rt = round((time.perf_counter() - st) / 60, 2)
    logger.info(f"Runtime: {rt} minutes")
    html = ""
    html += f"<p>Runtime: {rt} minutes on CPU</p>"
    if msg is not None:
        html += msg

    html += ""

    return html, sum_text_out, scores_out


def load_single_example_text(
    example_path: str or Path,
):
    """
    load_single_example - a helper function for the gradio module to load examples
    Returns:
        list of str, the examples
    """
    global name_to_path
    full_ex_path = name_to_path[example_path]
    full_ex_path = Path(full_ex_path)
    # load the examples into a list
    with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
        raw_text = f.read()
        text = clean(raw_text, lower=False)
    return text


def load_uploaded_file(file_obj):
    """
    load_uploaded_file - process an uploaded file

    Args:
        file_obj (POTENTIALLY list): Gradio file object inside a list

    Returns:
        str, the uploaded file contents
    """

    # file_path = Path(file_obj[0].name)

    # check if mysterious file object is a list
    if isinstance(file_obj, list):
        file_obj = file_obj[0]
    file_path = Path(file_obj.name)
    try:
        with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
            raw_text = f.read()
        text = clean(raw_text, lower=False)
        return text
    except Exception as e:
        logging.info(f"Trying to load file with path {file_path}, error: {e}")
        return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."


if __name__ == "__main__":
    logger = logging.getLogger(__name__)
    logger.info("Starting up app")
    name_to_path = load_example_filenames(_here / "examples")
    logging.info(f"Loaded {len(name_to_path)} examples")
    demo = gr.Blocks(
        title="Summarize Long-Form Text",
    )
    _examples = list(name_to_path.keys())
    with demo:
        gr.Markdown("# Long-Form Summarization: LED & BookSum")
        gr.Markdown(
            "LED models ([model card](https://huggingface.co/pszemraj/led-large-book-summary)) fine-tuned to summarize long-form text. A [space with other models can be found here](https://huggingface.co/spaces/pszemraj/document-summarization)"
        )
        with gr.Column():
            gr.Markdown("## Load Inputs & Select Parameters")
            gr.Markdown(
                "Enter or upload text below, and it will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). "
            )
            with gr.Row():
                model_name = gr.Dropdown(
                    choices=MODEL_OPTIONS,
                    value=MODEL_OPTIONS[0],
                    label="Model Name",
                )
                num_beams = gr.Radio(
                    choices=[2, 3, 4],
                    label="Beam Search: # of Beams",
                    value=2,
                )
            gr.Markdown(
                "Load a a .txt - example or your own (_You may find [this OCR space](https://huggingface.co/spaces/pszemraj/pdf-ocr) useful_)"
            )
            with gr.Row():
                example_name = gr.Dropdown(
                    _examples,
                    label="Examples",
                    value=random.choice(_examples),
                )
                uploaded_file = gr.File(
                    label="File Upload",
                    file_count="single",
                    type="file",
                )
            with gr.Row():
                input_text = gr.Textbox(
                    lines=4,
                    max_lines=12,
                    label="Text to Summarize",
                    placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
                )
                with gr.Column():
                    load_examples_button = gr.Button(
                        "Load Example",
                    )
                    load_file_button = gr.Button("Upload File")
        gr.Markdown("---")

        with gr.Column():
            gr.Markdown("## Generate Summary")
            gr.Markdown(
                "Summary generation should take approximately 1-2 minutes for most settings."
            )
            summarize_button = gr.Button(
                "Summarize!",
                variant="primary",
            )

            output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
            gr.Markdown("### Summary Output")
            summary_text = gr.Textbox(
                label="Summary", placeholder="The generated summary will appear here"
            )
            gr.Markdown(
                "The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
            )
            summary_scores = gr.Textbox(
                label="Summary Scores", placeholder="Summary scores will appear here"
            )

        gr.Markdown("---")

        with gr.Column():
            gr.Markdown("### Advanced Settings")
            with gr.Row():
                length_penalty = gr.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    label="length penalty",
                    value=0.7,
                    step=0.05,
                )
                token_batch_length = gr.Radio(
                    choices=[512, 768, 1024, 1536],
                    label="token batch length",
                    value=1024,
                )

            with gr.Row():
                repetition_penalty = gr.Slider(
                    minimum=1.0,
                    maximum=5.0,
                    label="repetition penalty",
                    value=3.5,
                    step=0.1,
                )
                no_repeat_ngram_size = gr.Radio(
                    choices=[2, 3, 4],
                    label="no repeat ngram size",
                    value=3,
                )
        with gr.Column():
            gr.Markdown("### About the Model")
            gr.Markdown(
                "- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
            )
            gr.Markdown(
                "- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a Colab notebook for a tutorial."
            )
            gr.Markdown(
                "- **Update May 1, 2023:** Enabled faster inference times via `use_cache=True`, the number of words the model will processed has been increased! Not on this demo, but there is a [test model](https://huggingface.co/pszemraj/led-large-book-summary-continued) available: an extension of `led-large-book-summary`."
            )
            gr.Markdown("---")

        load_examples_button.click(
            fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
        )

        load_file_button.click(
            fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
        )

        summarize_button.click(
            fn=proc_submission,
            inputs=[
                input_text,
                model_name,
                num_beams,
                token_batch_length,
                length_penalty,
                repetition_penalty,
                no_repeat_ngram_size,
            ],
            outputs=[output_text, summary_text, summary_scores],
        )

    demo.launch(
        enable_queue=True,
    )