|
import gradio as gr |
|
import joblib |
|
import numpy as np |
|
|
|
|
|
scaler = joblib.load('scaler.joblib') |
|
models = { |
|
"processing": joblib.load('svm_model_processing.joblib'), |
|
"perception": joblib.load('svm_model_perception.joblib'), |
|
"input": joblib.load('svm_model_input.joblib'), |
|
"understanding": joblib.load('svm_model_understanding.joblib'), |
|
} |
|
|
|
|
|
def predict(user_input): |
|
|
|
user_input_array = np.array(user_input).reshape(1, -1) |
|
|
|
|
|
user_input_scaled = scaler.transform(user_input_array) |
|
|
|
|
|
predictions = {} |
|
for target, model in models.items(): |
|
prediction = model.predict(user_input_scaled) |
|
predictions[target] = prediction[0] |
|
|
|
return predictions |
|
|
|
|
|
interface = gr.Interface(fn=predict, |
|
inputs=gr.Dataframe(type="numpy", row_count=1, col_count=12, |
|
headers=['course overview', 'reading file', 'abstract materiale', |
|
'concrete material', 'visual materials', 'self-assessment', |
|
'exercises submit', 'quiz submitted', 'playing', 'paused', |
|
'unstarted', 'buffering']), |
|
outputs=gr.JSON(), |
|
live=True) |
|
|
|
|
|
interface.launch() |