File size: 10,426 Bytes
5645c36
 
 
 
 
 
 
 
 
68394ea
adb504f
d3051c0
 
 
5645c36
 
 
 
4d0ec3e
 
 
 
 
 
 
 
 
 
 
26e0ddc
5645c36
b1c8f17
2e76cf7
5645c36
adb504f
4bf6be6
adb504f
 
5645c36
d3051c0
751cd9f
d3051c0
 
 
 
 
 
 
 
b1c8f17
5645c36
 
 
 
d3051c0
5645c36
d3051c0
 
5645c36
68394ea
26e0ddc
 
 
 
5645c36
 
68394ea
 
 
26e0ddc
 
 
5645c36
26e0ddc
 
4d0ec3e
26e0ddc
2bb5179
26e0ddc
 
d3051c0
 
26e0ddc
68394ea
 
 
 
 
 
 
5645c36
 
 
adb504f
5c4af3f
 
68394ea
4d0ec3e
5c4af3f
 
68394ea
 
 
 
 
 
 
 
 
 
4d0ec3e
68394ea
 
4d0ec3e
5c4af3f
68394ea
 
 
 
 
4d0ec3e
68394ea
5645c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68394ea
 
4d0ec3e
68394ea
 
 
 
 
 
 
 
4d0ec3e
68394ea
 
5645c36
 
 
 
68394ea
 
4d0ec3e
5645c36
68394ea
 
5645c36
 
768bfff
5645c36
 
768bfff
 
5645c36
4d0ec3e
5645c36
 
 
effe83d
5645c36
effe83d
5645c36
effe83d
5645c36
effe83d
5645c36
 
 
 
 
 
effe83d
5645c36
effe83d
5645c36
effe83d
 
 
 
 
 
2cda7d3
effe83d
 
5645c36
 
 
effe83d
 
 
165c567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5645c36
 
 
 
54210e7
 
5645c36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import time
import asyncio
import logging
import sqlite3
import tiktoken
from uuid import uuid4
from functools import lru_cache
from typing import Optional, List, Dict, Literal
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from openai import OpenAI

# ============================================================================
# Configuration and Setup
# ============================================================================

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("app.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# FastAPI app setup
app = FastAPI()

# API key configuration
API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)

# Model definitions
ModelID = Literal[
    "openai/gpt-4o-mini",
    "meta-llama/llama-3-70b-instruct",
    "anthropic/claude-3.5-sonnet",
    "deepseek/deepseek-coder",
    "anthropic/claude-3-haiku",
    "openai/gpt-3.5-turbo-instruct",
    "qwen/qwen-72b-chat",
    "google/gemma-2-27b-it"
]

# Pydantic models
class LLMAgentQueryModel(BaseModel):
    prompt: str = Field(..., description="User's query or prompt")
    system_message: Optional[str] = Field(None, description="Custom system message for the conversation")
    model_id: ModelID = Field(
        default="openai/gpt-4o-mini",
        description="ID of the model to use for response generation"
    )
    conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
    user_id: str = Field(..., description="Unique identifier for the user")

    class Config:
        schema_extra = {
            "example": {
                "prompt": "How do I implement a binary search in Python?",
                "system_message": "You are a helpful coding assistant.",
                "model_id": "meta-llama/llama-3-70b-instruct",
                "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
                "user_id": "user123"
            }
        }

# API key and client setup
@lru_cache()
def get_api_keys():
    logger.info("Loading API keys")
    return {
        "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
    }

api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")

# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}

# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")

# ============================================================================
# Database Functions
# ============================================================================

DB_PATH = '/app/data/conversations.db'

def init_db():
    logger.info("Initializing database")
    os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS conversations
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  user_id TEXT,
                  conversation_id TEXT,
                  message TEXT,
                  response TEXT,
                  timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
    conn.commit()
    conn.close()
    logger.info("Database initialized successfully")

def update_db(user_id, conversation_id, message, response):
    logger.info(f"Updating database for conversation: {conversation_id}")
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
                 VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
    conn.commit()
    conn.close()
    logger.info("Database updated successfully")

# ============================================================================
# Utility Functions
# ============================================================================

def calculate_tokens(msgs):
    return sum(len(encoding.encode(str(m))) for m in msgs)

def limit_conversation_history(conversation: List[Dict[str, str]], max_tokens: int = 4000) -> List[Dict[str, str]]:
    """Limit the conversation history to a maximum number of tokens."""
    limited_conversation = []
    current_tokens = 0

    for message in reversed(conversation):
        message_tokens = calculate_tokens([message])
        if current_tokens + message_tokens > max_tokens:
            break
        limited_conversation.insert(0, message)
        current_tokens += message_tokens

    return limited_conversation

async def verify_api_key(api_key: str = Security(api_key_header)):
    if api_key != API_KEY:
        logger.warning("Invalid API key used")
        raise HTTPException(status_code=403, detail="Could not validate credentials")
    return api_key

# ============================================================================
# LLM Interaction Functions
# ============================================================================

def chat_with_llama_stream(messages, model="meta-llama/llama-3-70b-instruct", max_output_tokens=2500):
    logger.info(f"Starting chat with model: {model}")
    try:
        response = or_client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=max_output_tokens,
            stream=True
        )
        
        full_response = ""
        for chunk in response:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                full_response += content
                yield content
        
        # After streaming, add the full response to the conversation history
        messages.append({"role": "assistant", "content": full_response})
        logger.info("Chat completed successfully")
    except Exception as e:
        logger.error(f"Error in model response: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")

# ============================================================================
# Background Tasks
# ============================================================================

async def clear_inactive_conversations():
    while True:
        logger.info("Clearing inactive conversations")
        current_time = time.time()
        inactive_convos = [conv_id for conv_id, last_time in last_activity.items() 
                           if current_time - last_time > 1800]  # 30 minutes
        for conv_id in inactive_convos:
            if conv_id in conversations:
                del conversations[conv_id]
            if conv_id in last_activity:
                del last_activity[conv_id]
        logger.info(f"Cleared {len(inactive_convos)} inactive conversations")
        await asyncio.sleep(60)  # Check every minute

# ============================================================================
# FastAPI Events and Endpoints
# ============================================================================

@app.on_event("startup")
async def startup_event():
    logger.info("Starting up the application")
    init_db()
    asyncio.create_task(clear_inactive_conversations())

@app.post("/llm-agent")
async def llm_agent(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
    Accepts custom system messages and allows selection of different models.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received LLM agent query: {query.prompt}")

    # Generate a new conversation ID if not provided
    if not query.conversation_id:
        query.conversation_id = str(uuid4())

    # Initialize or retrieve conversation history
    if query.conversation_id not in conversations:
        system_message = query.system_message or "You are a helpful assistant. Provide concise and accurate responses."
        conversations[query.conversation_id] = [
            {"role": "system", "content": system_message}
        ]
    elif query.system_message:
        # Update system message if provided
        conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}

    # Add user's prompt to conversation history
    conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
    last_activity[query.conversation_id] = time.time()

    # Limit tokens in the conversation history
    limited_conversation = limit_conversation_history(conversations[query.conversation_id])

    def process_response():
        full_response = ""
        for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
            full_response += content
            yield content

        # Add the assistant's response to the conversation history
        conversations[query.conversation_id].append({"role": "assistant", "content": full_response})

        background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
        logger.info(f"Completed LLM agent response for query: {query.prompt}")

    return StreamingResponse(process_response(), media_type="text/event-stream")

import edge_tts
import io


@app.get("/tts")
async def text_to_speech(
    text: str = Query(..., description="Text to convert to speech"),
    voice: str = Query(default="en-GB-SoniaNeural", description="Voice to use for speech")
):
    communicate = edge_tts.Communicate(text, voice)

    async def generate():
        async for chunk in communicate.stream():
            if chunk["type"] == "audio":
                yield chunk["data"]

    return StreamingResponse(generate(), media_type="audio/mpeg")

# ============================================================================
# Main Execution
# ============================================================================

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)