Spaces:
Running
Running
File size: 10,426 Bytes
5645c36 68394ea adb504f d3051c0 5645c36 4d0ec3e 26e0ddc 5645c36 b1c8f17 2e76cf7 5645c36 adb504f 4bf6be6 adb504f 5645c36 d3051c0 751cd9f d3051c0 b1c8f17 5645c36 d3051c0 5645c36 d3051c0 5645c36 68394ea 26e0ddc 5645c36 68394ea 26e0ddc 5645c36 26e0ddc 4d0ec3e 26e0ddc 2bb5179 26e0ddc d3051c0 26e0ddc 68394ea 5645c36 adb504f 5c4af3f 68394ea 4d0ec3e 5c4af3f 68394ea 4d0ec3e 68394ea 4d0ec3e 5c4af3f 68394ea 4d0ec3e 68394ea 5645c36 68394ea 4d0ec3e 68394ea 4d0ec3e 68394ea 5645c36 68394ea 4d0ec3e 5645c36 68394ea 5645c36 768bfff 5645c36 768bfff 5645c36 4d0ec3e 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 2cda7d3 effe83d 5645c36 effe83d 165c567 5645c36 54210e7 5645c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import time
import asyncio
import logging
import sqlite3
import tiktoken
from uuid import uuid4
from functools import lru_cache
from typing import Optional, List, Dict, Literal
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from openai import OpenAI
# ============================================================================
# Configuration and Setup
# ============================================================================
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# FastAPI app setup
app = FastAPI()
# API key configuration
API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
# Model definitions
ModelID = Literal[
"openai/gpt-4o-mini",
"meta-llama/llama-3-70b-instruct",
"anthropic/claude-3.5-sonnet",
"deepseek/deepseek-coder",
"anthropic/claude-3-haiku",
"openai/gpt-3.5-turbo-instruct",
"qwen/qwen-72b-chat",
"google/gemma-2-27b-it"
]
# Pydantic models
class LLMAgentQueryModel(BaseModel):
prompt: str = Field(..., description="User's query or prompt")
system_message: Optional[str] = Field(None, description="Custom system message for the conversation")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"prompt": "How do I implement a binary search in Python?",
"system_message": "You are a helpful coding assistant.",
"model_id": "meta-llama/llama-3-70b-instruct",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
# API key and client setup
@lru_cache()
def get_api_keys():
logger.info("Loading API keys")
return {
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
}
api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}
# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
# ============================================================================
# Database Functions
# ============================================================================
DB_PATH = '/app/data/conversations.db'
def init_db():
logger.info("Initializing database")
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS conversations
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
conversation_id TEXT,
message TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
logger.info("Database initialized successfully")
def update_db(user_id, conversation_id, message, response):
logger.info(f"Updating database for conversation: {conversation_id}")
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
conn.commit()
conn.close()
logger.info("Database updated successfully")
# ============================================================================
# Utility Functions
# ============================================================================
def calculate_tokens(msgs):
return sum(len(encoding.encode(str(m))) for m in msgs)
def limit_conversation_history(conversation: List[Dict[str, str]], max_tokens: int = 4000) -> List[Dict[str, str]]:
"""Limit the conversation history to a maximum number of tokens."""
limited_conversation = []
current_tokens = 0
for message in reversed(conversation):
message_tokens = calculate_tokens([message])
if current_tokens + message_tokens > max_tokens:
break
limited_conversation.insert(0, message)
current_tokens += message_tokens
return limited_conversation
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
logger.warning("Invalid API key used")
raise HTTPException(status_code=403, detail="Could not validate credentials")
return api_key
# ============================================================================
# LLM Interaction Functions
# ============================================================================
def chat_with_llama_stream(messages, model="meta-llama/llama-3-70b-instruct", max_output_tokens=2500):
logger.info(f"Starting chat with model: {model}")
try:
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_output_tokens,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
yield content
# After streaming, add the full response to the conversation history
messages.append({"role": "assistant", "content": full_response})
logger.info("Chat completed successfully")
except Exception as e:
logger.error(f"Error in model response: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
# ============================================================================
# Background Tasks
# ============================================================================
async def clear_inactive_conversations():
while True:
logger.info("Clearing inactive conversations")
current_time = time.time()
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
if current_time - last_time > 1800] # 30 minutes
for conv_id in inactive_convos:
if conv_id in conversations:
del conversations[conv_id]
if conv_id in last_activity:
del last_activity[conv_id]
logger.info(f"Cleared {len(inactive_convos)} inactive conversations")
await asyncio.sleep(60) # Check every minute
# ============================================================================
# FastAPI Events and Endpoints
# ============================================================================
@app.on_event("startup")
async def startup_event():
logger.info("Starting up the application")
init_db()
asyncio.create_task(clear_inactive_conversations())
@app.post("/llm-agent")
async def llm_agent(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
Accepts custom system messages and allows selection of different models.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received LLM agent query: {query.prompt}")
# Generate a new conversation ID if not provided
if not query.conversation_id:
query.conversation_id = str(uuid4())
# Initialize or retrieve conversation history
if query.conversation_id not in conversations:
system_message = query.system_message or "You are a helpful assistant. Provide concise and accurate responses."
conversations[query.conversation_id] = [
{"role": "system", "content": system_message}
]
elif query.system_message:
# Update system message if provided
conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}
# Add user's prompt to conversation history
conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = limit_conversation_history(conversations[query.conversation_id])
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
logger.info(f"Completed LLM agent response for query: {query.prompt}")
return StreamingResponse(process_response(), media_type="text/event-stream")
import edge_tts
import io
@app.get("/tts")
async def text_to_speech(
text: str = Query(..., description="Text to convert to speech"),
voice: str = Query(default="en-GB-SoniaNeural", description="Voice to use for speech")
):
communicate = edge_tts.Communicate(text, voice)
async def generate():
async for chunk in communicate.stream():
if chunk["type"] == "audio":
yield chunk["data"]
return StreamingResponse(generate(), media_type="audio/mpeg")
# ============================================================================
# Main Execution
# ============================================================================
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |