File size: 22,674 Bytes
64dbe75
5645c36
64dbe75
 
 
 
 
5645c36
 
 
 
 
 
 
 
64dbe75
adb504f
64dbe75
d3051c0
 
63ffb7f
5645c36
 
 
4d0ec3e
 
 
 
 
 
 
 
 
 
 
26e0ddc
5645c36
b1c8f17
2e76cf7
5645c36
adb504f
64dbe75
4bf6be6
adb504f
 
5645c36
d3051c0
751cd9f
d3051c0
 
 
 
 
 
 
 
b1c8f17
5645c36
 
 
 
d3051c0
5645c36
d3051c0
 
5645c36
68394ea
26e0ddc
 
 
 
5645c36
 
68394ea
 
 
26e0ddc
 
 
64dbe75
5645c36
26e0ddc
 
4d0ec3e
26e0ddc
2bb5179
72440bd
26e0ddc
 
d3051c0
 
26e0ddc
68394ea
 
 
 
 
 
 
5645c36
 
 
adb504f
5c4af3f
 
68394ea
4d0ec3e
5c4af3f
 
68394ea
 
 
 
 
 
 
 
 
 
4d0ec3e
68394ea
 
4d0ec3e
5c4af3f
68394ea
 
 
 
 
4d0ec3e
68394ea
5645c36
 
 
 
c14035d
 
 
 
 
 
02ddbf6
 
 
f164260
49af561
 
 
 
c14035d
02ddbf6
f164260
49af561
f164260
c14035d
49af561
02ddbf6
5645c36
 
 
79b14ac
5645c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab9a90
5645c36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68394ea
 
4d0ec3e
68394ea
 
 
 
 
 
 
 
02ddbf6
68394ea
5645c36
 
 
 
68394ea
 
4d0ec3e
5645c36
68394ea
 
5645c36
 
768bfff
5645c36
 
768bfff
 
5645c36
4d0ec3e
5645c36
 
 
effe83d
5645c36
effe83d
86c6f8f
effe83d
5645c36
effe83d
5645c36
 
 
 
 
 
effe83d
5645c36
effe83d
5645c36
effe83d
 
 
 
 
 
2cda7d3
effe83d
 
5645c36
 
 
effe83d
 
 
70589ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165c567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64dbe75
 
 
 
 
 
 
4f7b7b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64dbe75
 
 
 
b59ce9f
64dbe75
 
 
 
 
65df059
64dbe75
65df059
64dbe75
 
 
65df059
 
 
 
 
 
 
 
 
6625f9a
 
64dbe75
 
65df059
64dbe75
 
 
 
6625f9a
64dbe75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf00fe4
 
 
 
174be6b
dd33f2b
64dbe75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63ffb7f
64dbe75
 
 
 
 
 
 
 
 
f164260
 
 
64dbe75
ab33860
64dbe75
f61fcd6
64dbe75
 
 
f164260
 
024b8e0
f164260
 
 
64dbe75
 
f164260
 
 
 
64dbe75
 
 
fbae44c
 
 
 
 
 
 
 
 
47464fa
fbae44c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d1662
8f3bf38
fbae44c
 
 
 
 
72440bd
 
 
 
 
 
 
8028cc0
 
 
 
72440bd
 
 
 
 
 
 
fbae44c
72440bd
 
 
fbae44c
72440bd
fbae44c
 
 
 
5645c36
 
 
 
e82924b
 
83fd0f3
 
 
71d1662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37262f
83fd0f3
 
 
54210e7
 
5645c36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import re
import os
from enum import Enum
from uuid import uuid4
import base64
import requests
from io import BytesIO
import time
import asyncio
import logging
import sqlite3
import tiktoken
from uuid import uuid4
from functools import lru_cache
from typing import Optional, List, Dict, Literal
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks, Query, Header
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, Field
from openai import OpenAI
from prompts import *
# ============================================================================
# Configuration and Setup
# ============================================================================

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("app.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# FastAPI app setup
app = FastAPI()

# API key configuration
API_KEY_NAME = "X-API-Key"
PEXELS_API_KEY = os.environ["PEXELS_API_KEY"]
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)

# Model definitions
ModelID = Literal[
    "openai/gpt-4o-mini",
    "meta-llama/llama-3-70b-instruct",
    "anthropic/claude-3.5-sonnet",
    "deepseek/deepseek-coder",
    "anthropic/claude-3-haiku",
    "openai/gpt-3.5-turbo-instruct",
    "qwen/qwen-72b-chat",
    "google/gemma-2-27b-it"
]

# Pydantic models
class LLMAgentQueryModel(BaseModel):
    prompt: str = Field(..., description="User's query or prompt")
    system_message: Optional[str] = Field(None, description="Custom system message for the conversation")
    model_id: ModelID = Field(
        default="openai/gpt-4o-mini",
        description="ID of the model to use for response generation"
    )
    conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
    user_id: str = Field(..., description="Unique identifier for the user")

    class Config:
        schema_extra = {
            "example": {
                "prompt": "How do I implement a binary search in Python?",
                "system_message": "You are a helpful coding assistant.",
                "model_id": "meta-llama/llama-3-70b-instruct",
                "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
                "user_id": "user123"
            }
        }


# API key and client setup
@lru_cache()
def get_api_keys():
    logger.info("Loading API keys")
    return {
        "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
        # "OPENAI_API_KEY": f"sk-or-v1-{os.environ['OPENAI_API_KEY']}",
    }

api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")

# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}

# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")

# ============================================================================
# Database Functions
# ============================================================================

DB_PATH = '/app/data/conversations.db'

def init_db():
    logger.info("Initializing database")
    os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS conversations
                 (id INTEGER PRIMARY KEY AUTOINCREMENT,
                  user_id TEXT,
                  conversation_id TEXT,
                  message TEXT,
                  response TEXT,
                  timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
    conn.commit()
    conn.close()
    logger.info("Database initialized successfully")

def update_db(user_id, conversation_id, message, response):
    logger.info(f"Updating database for conversation: {conversation_id}")
    conn = sqlite3.connect(DB_PATH)
    c = conn.cursor()
    c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
                 VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
    conn.commit()
    conn.close()
    logger.info("Database updated successfully")

# ============================================================================
# Utility Functions
# ============================================================================

def extract_data_from_tag(input_string, tag, invert=False):
    """
    returns combined data from the identified tags, if not found return ""
    if inverted returns data excluding tag, if tag not found, input_string is returned 
    """
    
    pattern = f'<{tag}.*?>(.*?)</{tag}>'
    matches = re.findall(pattern, input_string, re.DOTALL)
    
    if invert:
        if matches:
            out = re.sub(pattern, '', input_string, flags=re.DOTALL)
            return out.strip()
        else:
            return input_string.strip()
    else:
        if matches:
            return '\n'.join(match.strip() for match in matches)
        else:
            return ""


def calculate_tokens(msgs):
    return sum(len(encoding.encode(str(m))) for m in msgs)

def limit_conversation_history(conversation: List[Dict[str, str]], max_tokens: int = 7500) -> List[Dict[str, str]]:
    """Limit the conversation history to a maximum number of tokens."""
    limited_conversation = []
    current_tokens = 0

    for message in reversed(conversation):
        message_tokens = calculate_tokens([message])
        if current_tokens + message_tokens > max_tokens:
            break
        limited_conversation.insert(0, message)
        current_tokens += message_tokens

    return limited_conversation

async def verify_api_key(api_key: str = Security(api_key_header)):
    if api_key != API_KEY:
        logger.warning("Invalid API key used")
        raise HTTPException(status_code=403, detail="Could not validate credentials")
    return api_key

# ============================================================================
# LLM Interaction Functions
# ============================================================================

def chat_with_llama_stream(messages, model="meta-llama/llama-3-70b-instruct", max_output_tokens=2500):
    logger.info(f"Recieved chat request: {messages}")
    logger.info(f"Starting chat with model: {model}")
    try:
        response = or_client.chat.completions.create(
            model=model,
            messages=messages,
            max_tokens=max_output_tokens,
            stream=True
        )
        
        full_response = ""
        for chunk in response:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                full_response += content
                yield content
        
        # After streaming, add the full response to the conversation history
        messages.append({"role": "assistant", "content": full_response})
        logger.info("Chat completed successfully")
    except Exception as e:
        logger.error(f"Error in model response: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")

# ============================================================================
# Background Tasks
# ============================================================================

async def clear_inactive_conversations():
    while True:
        logger.info("Clearing inactive conversations")
        current_time = time.time()
        inactive_convos = [conv_id for conv_id, last_time in last_activity.items() 
                           if current_time - last_time > 1800]  # 30 minutes
        for conv_id in inactive_convos:
            if conv_id in conversations:
                del conversations[conv_id]
            if conv_id in last_activity:
                del last_activity[conv_id]
        await asyncio.sleep(600)  # Check every hour

# ============================================================================
# FastAPI Events and Endpoints
# ============================================================================

@app.on_event("startup")
async def startup_event():
    logger.info("Starting up the application")
    init_db()
    asyncio.create_task(clear_inactive_conversations())

@app.post("/llm-agent")
async def llm_agent(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
    Accepts custom system messages and allows selection of different models.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received LLM agent query: {query.prompt}")

    # Generate a new conversation ID if not provided
    if not query.conversation_id:
        query.conversation_id = str(uuid4())

    # Initialize or retrieve conversation history
    if query.conversation_id not in conversations:
        system_message = query.system_message or "You are a helpful assistant."
        conversations[query.conversation_id] = [
            {"role": "system", "content": system_message}
        ]
    elif query.system_message:
        # Update system message if provided
        conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}

    # Add user's prompt to conversation history
    conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
    last_activity[query.conversation_id] = time.time()

    # Limit tokens in the conversation history
    limited_conversation = limit_conversation_history(conversations[query.conversation_id])

    def process_response():
        full_response = ""
        for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
            full_response += content
            yield content

        # Add the assistant's response to the conversation history
        conversations[query.conversation_id].append({"role": "assistant", "content": full_response})

        background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
        logger.info(f"Completed LLM agent response for query: {query.prompt}")

    return StreamingResponse(process_response(), media_type="text/event-stream")

@app.post("/v2/llm-agent")
async def llm_agent_v2(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
    Accepts custom system messages and allows selection of different models.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received LLM agent query: {query.prompt}")

    # Generate a new conversation ID if not provided
    if not query.conversation_id:
        query.conversation_id = str(uuid4())

    # Initialize or retrieve conversation history
    if query.conversation_id not in conversations:
        system_message = query.system_message or "You are a helpful assistant."
        conversations[query.conversation_id] = [
            {"role": "system", "content": system_message}
        ]
    elif query.system_message:
        # Update system message if provided
        conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}

    # Add user's prompt to conversation history
    conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
    last_activity[query.conversation_id] = time.time()

    # Limit tokens in the conversation history
    limited_conversation = limit_conversation_history(conversations[query.conversation_id])

    def process_response():
        full_response = ""
        for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
            full_response += content
            yield json.dumps({"type": "response","content": content}) + "\n"

        # Add the assistant's response to the conversation history
        conversations[query.conversation_id].append({"role": "assistant", "content": full_response})

        background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
        logger.info(f"Completed LLM agent response for query: {query.prompt}")

    return StreamingResponse(process_response(), media_type="text/event-stream")


import edge_tts
import io


@app.get("/tts")
async def text_to_speech(
    text: str = Query(..., description="Text to convert to speech"),
    voice: str = Query(default="en-GB-SoniaNeural", description="Voice to use for speech")
):
    communicate = edge_tts.Communicate(text, voice)

    async def generate():
        async for chunk in communicate.stream():
            if chunk["type"] == "audio":
                yield chunk["data"]

    return StreamingResponse(generate(), media_type="audio/mpeg")



# ============================================================================
# PPT AGENT
# ============================================================================

class PresentationChatModel(BaseModel):
    prompt: str = Field(..., description="User's query or prompt")
    model_id: ModelID = Field(
        default="openai/gpt-4o-mini",
        description="ID of the model to use for response generation"
    )
    conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
    user_id: str = Field(..., description="Unique identifier for the user")

    class Config:
        schema_extra = {
            "example": {
                "prompt": "Help me create a presentation for my healthy snacks startup",
                "model_id": "openai/gpt-4o-mini",
                "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
                "user_id": "user123"
            }
        }


# Enum for output formats
class OutputFormatEnum(str, Enum):
    html = "html"
    pdf = "pdf"
    pptx = "pptx"

# Class model for presentation data
class PresentationModel(BaseModel):
    markdown: str
    output_format: OutputFormatEnum = OutputFormatEnum.html

def get_pexels_image(query):
    default_img_url = "https://images.pexels.com/photos/593158/pexels-photo-593158.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2" 
    url = f"https://api.pexels.com/v1/search?query={query}&per_page=1"
    headers = {"Authorization": PEXELS_API_KEY}
    try:
      response = requests.get(url, headers=headers)
      if response.status_code == 200:
          data = response.json()
          logger.info(f"PEXELS API RESPONSE: {response.json()}")
          if data["total_results"] > 0:
              return data["photos"][0]["src"]["medium"]
      else:
          logger.error(f"PEXELS API ERROR: {response}")
          return default_img_url
    except Exception as e:
        logger.error(f"An error occurred for Pexels API: {e}")
        return default_img_url


def replace_image_keywords(text):
    def replace_match(match):
        bg_params = match.group(1)
        keyword = re.sub(r'[^\w\s]', ' ', match.group(2)).strip()
        logger.info(f"Extracted keywords for pexels : {keyword}")
        image_url = get_pexels_image(keyword)
        return f"![bg {bg_params}]({image_url})"

    pattern = r'!\[bg (.*?)\]\((.*?)\)'
    return re.sub(pattern, replace_match, text)

def convert_markdown_marp(markdown, output_format='html'):
    API_URL = "https://pvanand-marpit-backend.hf.space/convert"
    if output_format not in ['html', 'pdf', 'pptx']:
        raise ValueError(f"Invalid output format. Supported formats are: html, pdf, pptx")

    data = {
        "markdown": markdown,
        "outputFormat": output_format,
        "options": []
    }

    try:
        response = requests.post(API_URL, json=data, timeout=30)
        response.raise_for_status()
        return response.content
    except requests.exceptions.RequestException as e:
        logger.error(f"An error occurred while connecting to the API: {e}")
        return None


@app.post("/convert-md-to-presentation")
async def create_presentation(data: PresentationModel):
    if not data.markdown:
        raise HTTPException(status_code=400, detail="Please provide Markdown text.")
    
    markdown = data.markdown
    output_format = data.output_format
    
    markdown_with_images = replace_image_keywords(markdown)
    logger.info(f"INPUT MD: {markdown_with_images} OUTPUT FORMAT: {output_format}")
    result = convert_markdown_marp(markdown_with_images, output_format)

    if result:
        if output_format == 'html':
            return {"html": result.decode()}
        elif output_format == 'pdf':
            return StreamingResponse(BytesIO(result), media_type="application/pdf")
        elif output_format == 'pptx':
            return StreamingResponse(BytesIO(result), media_type="application/vnd.openxmlformats-officedocument.presentationml.presentation")
    else:
        raise HTTPException(status_code=500, detail="Failed to create presentation.")


@app.post("/presentation-agent")
async def presentation_chat(query: PresentationChatModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
    """
    Presentation chat endpoint that generates a presentation based on user queries.
    Uses the llm_agent function and returns both markdown and HTML output.
    Requires API Key authentication via X-API-Key header.
    """
    logger.info(f"Received presentation chat query: {query.prompt}")

    # Create a new LLMAgentQueryModel with a specific system message for presentation generation
    llm_query = LLMAgentQueryModel(
        prompt=query.prompt,
        conversation_id=query.conversation_id,
        system_message=PRESENTATION_SYSTEM_PROMPT,
        model_id=query.model_id,
        user_id=query.user_id
    )

    # Use the llm_agent function to generate the presentation content
    response_stream = await llm_agent(llm_query, background_tasks, api_key)

    # Collect the entire response
    full_response = ""
    html_content = ""
    marp_content_with_images = ""
    
    async for chunk in response_stream.body_iterator:
        full_response += chunk

    logger.info(f"####------LLM RESPONSE-------#####/n {full_response}")
    # Extract the Marp presentation content
    marp_content = extract_data_from_tag(full_response, "marp_presentation")

    if marp_content:
        # Replace image keywords
        marp_content_with_images = replace_image_keywords(marp_content.strip("```").strip("``"))
    
        # Convert Markdown to HTML
        html_content = convert_markdown_marp(marp_content_with_images, 'html')


    return JSONResponse({
            "response": extract_data_from_tag(full_response, "marp_presentation",invert=True),
            "markdown_presentation": marp_content_with_images,
            "html_presentation": html_content.decode() if isinstance(html_content, bytes) else html_content
        })


# ============================================================================
# AUDIO ENDPOINTS
# ============================================================================



from enum import Enum
import io

openai_client = OpenAI(api_key = os.getenv("OPENAI_API_KEY"))

class OpenaiTTSModels:
    class ModelType(str, Enum):
        tts_1_hd = "tts-1-hd"
        tts_1 = "tts-1"

    class VoiceType(str, Enum):
        alloy = "alloy"
        echo = "echo"
        fable = "fable"
        onyx = "onyx"
        nova = "nova"
        shimmer = "shimmer"

    class OutputFormat(str, Enum):
        mp3 = "mp3"
        opus = "opus"
        aac = "aac"
        flac = "flac"
        wav = "wav"
        pcm = "pcm"

class AudioAPI:
    class TTSRequest(BaseModel):
        model: OpenaiTTSModels.ModelType = Field(..., description="The TTS model to use")
        voice: OpenaiTTSModels.VoiceType = Field(..., description="The voice type for speech synthesis")
        input: str = Field(..., description="The text to convert to speech")
        output_format: OpenaiTTSModels.OutputFormat = Field(default=OpenaiTTSModels.OutputFormat.mp3, description="The audio output format")

@app.post("/v2/tts")
async def text_to_speech_v2(request: AudioAPI.TTSRequest, api_key: str = Depends(verify_api_key)):
    """
    Convert text to speech using OpenAI's TTS API with real-time audio streaming.
    Requires API Key authentication via X-API-Key header.
    """
    try:
    response = openai_client.audio.speech.create(
        model=request.model,
        voice=request.voice,
        input=request.input,
        response_format="mp3"  # Always set to MP3
    )
    
        return StreamingResponse(io.BytesIO(response.content), media_type="audio/mp3")
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    # try:
    #     response = openai_client.audio.speech.create(
    #         model=request.model,
    #         voice=request.voice,
    #         input=request.input,
    #         response_format=request.output_format
    #     )
        
    #     content_type = f"audio/{request.output_format.value}"
    #     if request.output_format == OpenaiTTSModels.OutputFormat.pcm:
    #         content_type = "audio/pcm"
        
    #     return StreamingResponse(io.BytesIO(response.content), media_type=content_type)
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
        
# ============================================================================
# Main Execution
# ============================================================================

from fastapi.middleware.cors import CORSMiddleware

# CORS middleware setup
app.add_middleware(
    CORSMiddleware,
     #allow_origins=["*"],
    allow_origins=[
        "http://127.0.0.1:5501/",
        "http://localhost:5501",
        "http://localhost:3000",
        "https://www.elevaticsai.com",
        "https://www.elevatics.cloud",
        "https://www.elevatics.online",
        "https://www.elevatics.ai",
        "https://elevaticsai.com",
        "https://elevatics.cloud",
        "https://elevatics.online",
        "https://elevatics.ai",
        "https://pvanand-specialized-agents.hf.space",
        "https://pvanand-audio-chat.hf.space/"
    ],
    allow_credentials=True,
    allow_methods=["GET", "POST"],
    allow_headers=["*"],
)
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)