Spaces:
Running
Running
File size: 22,674 Bytes
64dbe75 5645c36 64dbe75 5645c36 64dbe75 adb504f 64dbe75 d3051c0 63ffb7f 5645c36 4d0ec3e 26e0ddc 5645c36 b1c8f17 2e76cf7 5645c36 adb504f 64dbe75 4bf6be6 adb504f 5645c36 d3051c0 751cd9f d3051c0 b1c8f17 5645c36 d3051c0 5645c36 d3051c0 5645c36 68394ea 26e0ddc 5645c36 68394ea 26e0ddc 64dbe75 5645c36 26e0ddc 4d0ec3e 26e0ddc 2bb5179 72440bd 26e0ddc d3051c0 26e0ddc 68394ea 5645c36 adb504f 5c4af3f 68394ea 4d0ec3e 5c4af3f 68394ea 4d0ec3e 68394ea 4d0ec3e 5c4af3f 68394ea 4d0ec3e 68394ea 5645c36 c14035d 02ddbf6 f164260 49af561 c14035d 02ddbf6 f164260 49af561 f164260 c14035d 49af561 02ddbf6 5645c36 79b14ac 5645c36 dab9a90 5645c36 68394ea 4d0ec3e 68394ea 02ddbf6 68394ea 5645c36 68394ea 4d0ec3e 5645c36 68394ea 5645c36 768bfff 5645c36 768bfff 5645c36 4d0ec3e 5645c36 effe83d 5645c36 effe83d 86c6f8f effe83d 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 5645c36 effe83d 2cda7d3 effe83d 5645c36 effe83d 70589ed 165c567 64dbe75 4f7b7b0 64dbe75 b59ce9f 64dbe75 65df059 64dbe75 65df059 64dbe75 65df059 6625f9a 64dbe75 65df059 64dbe75 6625f9a 64dbe75 cf00fe4 174be6b dd33f2b 64dbe75 63ffb7f 64dbe75 f164260 64dbe75 ab33860 64dbe75 f61fcd6 64dbe75 f164260 024b8e0 f164260 64dbe75 f164260 64dbe75 fbae44c 47464fa fbae44c 71d1662 8f3bf38 fbae44c 72440bd 8028cc0 72440bd fbae44c 72440bd fbae44c 72440bd fbae44c 5645c36 e82924b 83fd0f3 71d1662 e37262f 83fd0f3 54210e7 5645c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import re
import os
from enum import Enum
from uuid import uuid4
import base64
import requests
from io import BytesIO
import time
import asyncio
import logging
import sqlite3
import tiktoken
from uuid import uuid4
from functools import lru_cache
from typing import Optional, List, Dict, Literal
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks, Query, Header
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, Field
from openai import OpenAI
from prompts import *
# ============================================================================
# Configuration and Setup
# ============================================================================
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# FastAPI app setup
app = FastAPI()
# API key configuration
API_KEY_NAME = "X-API-Key"
PEXELS_API_KEY = os.environ["PEXELS_API_KEY"]
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
# Model definitions
ModelID = Literal[
"openai/gpt-4o-mini",
"meta-llama/llama-3-70b-instruct",
"anthropic/claude-3.5-sonnet",
"deepseek/deepseek-coder",
"anthropic/claude-3-haiku",
"openai/gpt-3.5-turbo-instruct",
"qwen/qwen-72b-chat",
"google/gemma-2-27b-it"
]
# Pydantic models
class LLMAgentQueryModel(BaseModel):
prompt: str = Field(..., description="User's query or prompt")
system_message: Optional[str] = Field(None, description="Custom system message for the conversation")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"prompt": "How do I implement a binary search in Python?",
"system_message": "You are a helpful coding assistant.",
"model_id": "meta-llama/llama-3-70b-instruct",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
# API key and client setup
@lru_cache()
def get_api_keys():
logger.info("Loading API keys")
return {
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
# "OPENAI_API_KEY": f"sk-or-v1-{os.environ['OPENAI_API_KEY']}",
}
api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}
# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
# ============================================================================
# Database Functions
# ============================================================================
DB_PATH = '/app/data/conversations.db'
def init_db():
logger.info("Initializing database")
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS conversations
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
conversation_id TEXT,
message TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
logger.info("Database initialized successfully")
def update_db(user_id, conversation_id, message, response):
logger.info(f"Updating database for conversation: {conversation_id}")
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
conn.commit()
conn.close()
logger.info("Database updated successfully")
# ============================================================================
# Utility Functions
# ============================================================================
def extract_data_from_tag(input_string, tag, invert=False):
"""
returns combined data from the identified tags, if not found return ""
if inverted returns data excluding tag, if tag not found, input_string is returned
"""
pattern = f'<{tag}.*?>(.*?)</{tag}>'
matches = re.findall(pattern, input_string, re.DOTALL)
if invert:
if matches:
out = re.sub(pattern, '', input_string, flags=re.DOTALL)
return out.strip()
else:
return input_string.strip()
else:
if matches:
return '\n'.join(match.strip() for match in matches)
else:
return ""
def calculate_tokens(msgs):
return sum(len(encoding.encode(str(m))) for m in msgs)
def limit_conversation_history(conversation: List[Dict[str, str]], max_tokens: int = 7500) -> List[Dict[str, str]]:
"""Limit the conversation history to a maximum number of tokens."""
limited_conversation = []
current_tokens = 0
for message in reversed(conversation):
message_tokens = calculate_tokens([message])
if current_tokens + message_tokens > max_tokens:
break
limited_conversation.insert(0, message)
current_tokens += message_tokens
return limited_conversation
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
logger.warning("Invalid API key used")
raise HTTPException(status_code=403, detail="Could not validate credentials")
return api_key
# ============================================================================
# LLM Interaction Functions
# ============================================================================
def chat_with_llama_stream(messages, model="meta-llama/llama-3-70b-instruct", max_output_tokens=2500):
logger.info(f"Recieved chat request: {messages}")
logger.info(f"Starting chat with model: {model}")
try:
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_output_tokens,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
yield content
# After streaming, add the full response to the conversation history
messages.append({"role": "assistant", "content": full_response})
logger.info("Chat completed successfully")
except Exception as e:
logger.error(f"Error in model response: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
# ============================================================================
# Background Tasks
# ============================================================================
async def clear_inactive_conversations():
while True:
logger.info("Clearing inactive conversations")
current_time = time.time()
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
if current_time - last_time > 1800] # 30 minutes
for conv_id in inactive_convos:
if conv_id in conversations:
del conversations[conv_id]
if conv_id in last_activity:
del last_activity[conv_id]
await asyncio.sleep(600) # Check every hour
# ============================================================================
# FastAPI Events and Endpoints
# ============================================================================
@app.on_event("startup")
async def startup_event():
logger.info("Starting up the application")
init_db()
asyncio.create_task(clear_inactive_conversations())
@app.post("/llm-agent")
async def llm_agent(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
Accepts custom system messages and allows selection of different models.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received LLM agent query: {query.prompt}")
# Generate a new conversation ID if not provided
if not query.conversation_id:
query.conversation_id = str(uuid4())
# Initialize or retrieve conversation history
if query.conversation_id not in conversations:
system_message = query.system_message or "You are a helpful assistant."
conversations[query.conversation_id] = [
{"role": "system", "content": system_message}
]
elif query.system_message:
# Update system message if provided
conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}
# Add user's prompt to conversation history
conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = limit_conversation_history(conversations[query.conversation_id])
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
logger.info(f"Completed LLM agent response for query: {query.prompt}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v2/llm-agent")
async def llm_agent_v2(query: LLMAgentQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
LLM agent endpoint that provides responses based on user queries, maintaining conversation history.
Accepts custom system messages and allows selection of different models.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received LLM agent query: {query.prompt}")
# Generate a new conversation ID if not provided
if not query.conversation_id:
query.conversation_id = str(uuid4())
# Initialize or retrieve conversation history
if query.conversation_id not in conversations:
system_message = query.system_message or "You are a helpful assistant."
conversations[query.conversation_id] = [
{"role": "system", "content": system_message}
]
elif query.system_message:
# Update system message if provided
conversations[query.conversation_id][0] = {"role": "system", "content": query.system_message}
# Add user's prompt to conversation history
conversations[query.conversation_id].append({"role": "user", "content": query.prompt})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = limit_conversation_history(conversations[query.conversation_id])
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield json.dumps({"type": "response","content": content}) + "\n"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.prompt, full_response)
logger.info(f"Completed LLM agent response for query: {query.prompt}")
return StreamingResponse(process_response(), media_type="text/event-stream")
import edge_tts
import io
@app.get("/tts")
async def text_to_speech(
text: str = Query(..., description="Text to convert to speech"),
voice: str = Query(default="en-GB-SoniaNeural", description="Voice to use for speech")
):
communicate = edge_tts.Communicate(text, voice)
async def generate():
async for chunk in communicate.stream():
if chunk["type"] == "audio":
yield chunk["data"]
return StreamingResponse(generate(), media_type="audio/mpeg")
# ============================================================================
# PPT AGENT
# ============================================================================
class PresentationChatModel(BaseModel):
prompt: str = Field(..., description="User's query or prompt")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"prompt": "Help me create a presentation for my healthy snacks startup",
"model_id": "openai/gpt-4o-mini",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
# Enum for output formats
class OutputFormatEnum(str, Enum):
html = "html"
pdf = "pdf"
pptx = "pptx"
# Class model for presentation data
class PresentationModel(BaseModel):
markdown: str
output_format: OutputFormatEnum = OutputFormatEnum.html
def get_pexels_image(query):
default_img_url = "https://images.pexels.com/photos/593158/pexels-photo-593158.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=2"
url = f"https://api.pexels.com/v1/search?query={query}&per_page=1"
headers = {"Authorization": PEXELS_API_KEY}
try:
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
logger.info(f"PEXELS API RESPONSE: {response.json()}")
if data["total_results"] > 0:
return data["photos"][0]["src"]["medium"]
else:
logger.error(f"PEXELS API ERROR: {response}")
return default_img_url
except Exception as e:
logger.error(f"An error occurred for Pexels API: {e}")
return default_img_url
def replace_image_keywords(text):
def replace_match(match):
bg_params = match.group(1)
keyword = re.sub(r'[^\w\s]', ' ', match.group(2)).strip()
logger.info(f"Extracted keywords for pexels : {keyword}")
image_url = get_pexels_image(keyword)
return f"![bg {bg_params}]({image_url})"
pattern = r'!\[bg (.*?)\]\((.*?)\)'
return re.sub(pattern, replace_match, text)
def convert_markdown_marp(markdown, output_format='html'):
API_URL = "https://pvanand-marpit-backend.hf.space/convert"
if output_format not in ['html', 'pdf', 'pptx']:
raise ValueError(f"Invalid output format. Supported formats are: html, pdf, pptx")
data = {
"markdown": markdown,
"outputFormat": output_format,
"options": []
}
try:
response = requests.post(API_URL, json=data, timeout=30)
response.raise_for_status()
return response.content
except requests.exceptions.RequestException as e:
logger.error(f"An error occurred while connecting to the API: {e}")
return None
@app.post("/convert-md-to-presentation")
async def create_presentation(data: PresentationModel):
if not data.markdown:
raise HTTPException(status_code=400, detail="Please provide Markdown text.")
markdown = data.markdown
output_format = data.output_format
markdown_with_images = replace_image_keywords(markdown)
logger.info(f"INPUT MD: {markdown_with_images} OUTPUT FORMAT: {output_format}")
result = convert_markdown_marp(markdown_with_images, output_format)
if result:
if output_format == 'html':
return {"html": result.decode()}
elif output_format == 'pdf':
return StreamingResponse(BytesIO(result), media_type="application/pdf")
elif output_format == 'pptx':
return StreamingResponse(BytesIO(result), media_type="application/vnd.openxmlformats-officedocument.presentationml.presentation")
else:
raise HTTPException(status_code=500, detail="Failed to create presentation.")
@app.post("/presentation-agent")
async def presentation_chat(query: PresentationChatModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Presentation chat endpoint that generates a presentation based on user queries.
Uses the llm_agent function and returns both markdown and HTML output.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received presentation chat query: {query.prompt}")
# Create a new LLMAgentQueryModel with a specific system message for presentation generation
llm_query = LLMAgentQueryModel(
prompt=query.prompt,
conversation_id=query.conversation_id,
system_message=PRESENTATION_SYSTEM_PROMPT,
model_id=query.model_id,
user_id=query.user_id
)
# Use the llm_agent function to generate the presentation content
response_stream = await llm_agent(llm_query, background_tasks, api_key)
# Collect the entire response
full_response = ""
html_content = ""
marp_content_with_images = ""
async for chunk in response_stream.body_iterator:
full_response += chunk
logger.info(f"####------LLM RESPONSE-------#####/n {full_response}")
# Extract the Marp presentation content
marp_content = extract_data_from_tag(full_response, "marp_presentation")
if marp_content:
# Replace image keywords
marp_content_with_images = replace_image_keywords(marp_content.strip("```").strip("``"))
# Convert Markdown to HTML
html_content = convert_markdown_marp(marp_content_with_images, 'html')
return JSONResponse({
"response": extract_data_from_tag(full_response, "marp_presentation",invert=True),
"markdown_presentation": marp_content_with_images,
"html_presentation": html_content.decode() if isinstance(html_content, bytes) else html_content
})
# ============================================================================
# AUDIO ENDPOINTS
# ============================================================================
from enum import Enum
import io
openai_client = OpenAI(api_key = os.getenv("OPENAI_API_KEY"))
class OpenaiTTSModels:
class ModelType(str, Enum):
tts_1_hd = "tts-1-hd"
tts_1 = "tts-1"
class VoiceType(str, Enum):
alloy = "alloy"
echo = "echo"
fable = "fable"
onyx = "onyx"
nova = "nova"
shimmer = "shimmer"
class OutputFormat(str, Enum):
mp3 = "mp3"
opus = "opus"
aac = "aac"
flac = "flac"
wav = "wav"
pcm = "pcm"
class AudioAPI:
class TTSRequest(BaseModel):
model: OpenaiTTSModels.ModelType = Field(..., description="The TTS model to use")
voice: OpenaiTTSModels.VoiceType = Field(..., description="The voice type for speech synthesis")
input: str = Field(..., description="The text to convert to speech")
output_format: OpenaiTTSModels.OutputFormat = Field(default=OpenaiTTSModels.OutputFormat.mp3, description="The audio output format")
@app.post("/v2/tts")
async def text_to_speech_v2(request: AudioAPI.TTSRequest, api_key: str = Depends(verify_api_key)):
"""
Convert text to speech using OpenAI's TTS API with real-time audio streaming.
Requires API Key authentication via X-API-Key header.
"""
try:
response = openai_client.audio.speech.create(
model=request.model,
voice=request.voice,
input=request.input,
response_format="mp3" # Always set to MP3
)
return StreamingResponse(io.BytesIO(response.content), media_type="audio/mp3")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# try:
# response = openai_client.audio.speech.create(
# model=request.model,
# voice=request.voice,
# input=request.input,
# response_format=request.output_format
# )
# content_type = f"audio/{request.output_format.value}"
# if request.output_format == OpenaiTTSModels.OutputFormat.pcm:
# content_type = "audio/pcm"
# return StreamingResponse(io.BytesIO(response.content), media_type=content_type)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# ============================================================================
# Main Execution
# ============================================================================
from fastapi.middleware.cors import CORSMiddleware
# CORS middleware setup
app.add_middleware(
CORSMiddleware,
#allow_origins=["*"],
allow_origins=[
"http://127.0.0.1:5501/",
"http://localhost:5501",
"http://localhost:3000",
"https://www.elevaticsai.com",
"https://www.elevatics.cloud",
"https://www.elevatics.online",
"https://www.elevatics.ai",
"https://elevaticsai.com",
"https://elevatics.cloud",
"https://elevatics.online",
"https://elevatics.ai",
"https://pvanand-specialized-agents.hf.space",
"https://pvanand-audio-chat.hf.space/"
],
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |