Spaces:
Sleeping
Sleeping
Upload create_faiss_index.py
Browse filesScript to create faiss vector database
- create_faiss_index.py +58 -0
create_faiss_index.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled27.ipynb
|
3 |
+
"""
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import numpy as np
|
7 |
+
import faiss
|
8 |
+
from sentence_transformers import InputExample, SentenceTransformer
|
9 |
+
|
10 |
+
DATA_FILE_PATH = "/content/omdena_faq_training_data.csv"
|
11 |
+
TRANSFORMER_MODEL_NAME = "all-distilroberta-v1"
|
12 |
+
CACHE_DIR_PATH = "../working/cache/"
|
13 |
+
MODEL_SAVE_PATH = "all-distilroberta-v1-model.pkl"
|
14 |
+
FAISS_INDEX_FILE_PATH = "index.faiss"
|
15 |
+
|
16 |
+
def load_data(file_path):
|
17 |
+
qna_dataset = pd.read_csv(file_path)
|
18 |
+
qna_dataset["id"] = qna_dataset.index
|
19 |
+
return qna_dataset.dropna(subset=['Answers']).copy()
|
20 |
+
|
21 |
+
def create_input_examples(qna_dataset):
|
22 |
+
qna_dataset['QNA'] = qna_dataset.apply(lambda row: f"Question: {row['Questions']}, Answer: {row['Answers']}", axis=1)
|
23 |
+
return qna_dataset.apply(lambda x: InputExample(texts=[x["QNA"]]), axis=1).tolist()
|
24 |
+
|
25 |
+
def load_transformer_model(model_name, cache_folder):
|
26 |
+
transformer_model = SentenceTransformer(model_name, cache_folder=cache_folder)
|
27 |
+
return transformer_model
|
28 |
+
|
29 |
+
def save_transformer_model(transformer_model, model_file):
|
30 |
+
transformer_model.save(model_file)
|
31 |
+
|
32 |
+
def create_faiss_index(transformer_model, qna_dataset):
|
33 |
+
faiss_embeddings = transformer_model.encode(qna_dataset.Answers.values.tolist())
|
34 |
+
qna_dataset_indexed = qna_dataset.set_index(["id"], drop=False)
|
35 |
+
id_index_array = np.array(qna_dataset_indexed.id.values).flatten().astype("int")
|
36 |
+
normalized_embeddings = faiss_embeddings.copy()
|
37 |
+
faiss.normalize_L2(normalized_embeddings)
|
38 |
+
faiss_index = faiss.IndexIDMap(faiss.IndexFlatIP(len(faiss_embeddings[0])))
|
39 |
+
faiss_index.add_with_ids(normalized_embeddings, id_index_array)
|
40 |
+
return faiss_index
|
41 |
+
|
42 |
+
def save_faiss_index(faiss_index, filename):
|
43 |
+
faiss.write_index(faiss_index, filename)
|
44 |
+
|
45 |
+
def load_faiss_index(filename):
|
46 |
+
return faiss.read_index(filename)
|
47 |
+
|
48 |
+
def main():
|
49 |
+
qna_dataset = load_data(DATA_FILE_PATH)
|
50 |
+
input_examples = create_input_examples(qna_dataset)
|
51 |
+
transformer_model = load_transformer_model(TRANSFORMER_MODEL_NAME, CACHE_DIR_PATH)
|
52 |
+
save_transformer_model(transformer_model, MODEL_SAVE_PATH)
|
53 |
+
faiss_index = create_faiss_index(transformer_model, qna_dataset)
|
54 |
+
save_faiss_index(faiss_index, FAISS_INDEX_FILE_PATH)
|
55 |
+
faiss_index = load_faiss_index(FAISS_INDEX_FILE_PATH)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
main()
|