File size: 11,236 Bytes
bc15143
63df3f2
bc15143
11f96c1
bc15143
63df3f2
 
 
 
43c94a5
 
d9309f4
 
bc15143
63df3f2
 
 
 
11f96c1
 
 
 
 
63df3f2
d9309f4
 
63df3f2
 
 
 
 
 
 
 
 
 
 
 
11f96c1
 
63df3f2
 
11f96c1
 
 
63df3f2
11f96c1
63df3f2
de5a712
63df3f2
 
 
 
 
 
 
 
 
 
 
11f96c1
63df3f2
de5a712
63df3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
11f96c1
63df3f2
11f96c1
 
 
 
 
 
63df3f2
 
 
 
 
 
 
 
 
 
11f96c1
63df3f2
11f96c1
 
 
 
 
 
 
63df3f2
 
 
 
 
 
 
 
 
 
43c94a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9309f4
 
 
 
 
 
 
 
 
e392631
d9309f4
 
 
 
 
 
e392631
d9309f4
bc15143
d9309f4
 
 
bc15143
 
e392631
d9309f4
bc15143
d9309f4
 
 
 
bc15143
 
 
 
 
 
d9309f4
 
 
 
 
 
 
e392631
bc15143
 
d9309f4
 
 
 
 
 
 
 
 
 
 
 
bc15143
e392631
 
d9309f4
 
 
e392631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21487ff
 
bc15143
 
e392631
bc15143
 
b1911fe
bc15143
 
 
 
 
b1911fe
bc15143
d9309f4
 
 
 
 
 
43c94a5
 
 
 
63df3f2
 
b1911fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from fastapi import FastAPI, HTTPException, Header, Depends, BackgroundTasks, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, AsyncGenerator
import json
import os
import logging
from txtai.embeddings import Embeddings
import pandas as pd
import glob
import uuid
import httpx
import asyncio
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="Embeddings API",
    description="An API for creating and querying text embeddings indexes.",
    version="1.0.0"
)

CHAT_AUTH_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")

# Enable CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allows all origins
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

embeddings = Embeddings({"path": "avsolatorio/GIST-all-MiniLM-L6-v2"})

class DocumentRequest(BaseModel):
    index_id: str = Field(..., description="Unique identifier for the index")
    documents: List[str] = Field(..., description="List of documents to be indexed")

class QueryRequest(BaseModel):
    index_id: str = Field(..., description="Unique identifier for the index to query")
    query: str = Field(..., description="The search query")
    num_results: int = Field(..., description="Number of results to return", ge=1)

def save_embeddings(index_id: str, document_list: List[str]):
    try:
        folder_path = f"/app/indexes/{index_id}"
        os.makedirs(folder_path, exist_ok=True)
        # Save embeddings
        embeddings.save(f"{folder_path}/embeddings")
        # Save document_list
        with open(f"{folder_path}/document_list.json", "w") as f:
            json.dump(document_list, f)
        logger.info(f"Embeddings and document list saved for index_id: {index_id}")
    except Exception as e:
        logger.error(f"Error saving embeddings for index_id {index_id}: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error saving embeddings: {str(e)}")

def load_embeddings(index_id: str) -> List[str]:
    try:
        folder_path = f"/app/indexes/{index_id}"
        if not os.path.exists(folder_path):
            logger.error(f"Index not found for index_id: {index_id}")
            raise HTTPException(status_code=404, detail="Index not found")
        # Load embeddings
        embeddings.load(f"{folder_path}/embeddings")
        # Load document_list
        with open(f"{folder_path}/document_list.json", "r") as f:
            document_list = json.load(f)
        logger.info(f"Embeddings and document list loaded for index_id: {index_id}")
        return document_list
    except Exception as e:
        logger.error(f"Error loading embeddings for index_id {index_id}: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error loading embeddings: {str(e)}")

@app.post("/create_index/", response_model=dict, tags=["Index Operations"])
async def create_index(request: DocumentRequest):
    """
    Create a new index with the given documents.
    
    - **index_id**: Unique identifier for the index
    - **documents**: List of documents to be indexed
    """
    try:
        document_list = [(i, text, None) for i, text in enumerate(request.documents)]
        embeddings.index(document_list)
        save_embeddings(request.index_id, request.documents)  # Save the original documents
        logger.info(f"Index created successfully for index_id: {request.index_id}")
        return {"message": "Index created successfully"}
    except Exception as e:
        logger.error(f"Error creating index: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error creating index: {str(e)}")

@app.post("/query_index/", response_model=dict, tags=["Index Operations"])
async def query_index(request: QueryRequest):
    """
    Query an existing index with the given search query.
    
    - **index_id**: Unique identifier for the index to query
    - **query**: The search query
    - **num_results**: Number of results to return
    """
    try:
        document_list = load_embeddings(request.index_id)
        results = embeddings.search(request.query, request.num_results)
        queried_texts = [document_list[idx[0]] for idx in results]
        logger.info(f"Query executed successfully for index_id: {request.index_id}")
        return {"queried_texts": queried_texts}
    except Exception as e:
        logger.error(f"Error querying index: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error querying index: {str(e)}")

def process_csv_file(file_path):
    try:
        df = pd.read_csv(file_path)
        df_rows = df.apply(lambda row: ' '.join(row.values.astype(str)), axis=1)
        txtai_data = [(i, row, None) for i, row in enumerate(df_rows)]
        return txtai_data, df_rows.tolist()
    except Exception as e:
        logger.error(f"Error processing CSV file {file_path}: {str(e)}")
        return None, None

def check_and_index_csv_files():
    index_data_folder = "/app/index_data"
    if not os.path.exists(index_data_folder):
        logger.warning(f"index_data folder not found: {index_data_folder}")
        return

    csv_files = glob.glob(os.path.join(index_data_folder, "*.csv"))
    for csv_file in csv_files:
        index_id = os.path.splitext(os.path.basename(csv_file))[0]
        if not os.path.exists(f"/app/indexes/{index_id}"):
            logger.info(f"Processing CSV file: {csv_file}")
            txtai_data, documents = process_csv_file(csv_file)
            if txtai_data and documents:
                embeddings.index(txtai_data)
                save_embeddings(index_id, documents)
                logger.info(f"CSV file indexed successfully: {csv_file}")
            else:
                logger.warning(f"Failed to process CSV file: {csv_file}")
        else:
            logger.info(f"Index already exists for: {csv_file}")


# ... [Previous code for DocumentRequest, QueryRequest, save_embeddings, load_embeddings, create_index, query_index, process_csv_file, check_and_index_csv_files remains the same]

class ChatRequest(BaseModel):
    query: str = Field(..., description="The user's query")
    index_id: str = Field(..., description="Unique identifier for the index to query")
    conversation_id: Optional[str] = Field(None, description="Unique identifier for the conversation")
    model_id: str = Field(..., description="Identifier for the LLM model to use")
    user_id: str = Field(..., description="Unique identifier for the user")
    enable_followup: bool = Field(default=False, description="Flag to enable follow-up questions")

async def get_api_key(x_api_key: str = Header(...)) -> str:
    if x_api_key != CHAT_AUTH_KEY:
        raise HTTPException(status_code=403, detail="Invalid API key")
    return x_api_key

async def stream_llm_request(api_key: str, llm_request: Dict[str, str]), endpoint_url:str -> AsyncGenerator[str, None]:
    """
    Make a streaming request to the LLM service.
    """
    try:
        async with httpx.AsyncClient() as client:
            async with client.stream(
                "POST",
                endpoint_url,
                headers={
                    "accept": "text/event-stream",
                    "X-API-Key": api_key,
                    "Content-Type": "application/json"
                },
                json=llm_request
            ) as response:
                if response.status_code != 200:
                    raise HTTPException(status_code=response.status_code, detail="Error from LLM service")
                
                async for chunk in response.aiter_text():
                    yield chunk
    except httpx.HTTPError as e:
        logger.error(f"HTTP error occurred while making LLM request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"HTTP error occurred while making LLM request: {str(e)}")
    except Exception as e:
        logger.error(f"Unexpected error occurred while making LLM request: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Unexpected error occurred while making LLM request: {str(e)}")


@app.post("/chat/", response_class=StreamingResponse, tags=["Chat"])
async def chat(request: ChatRequest, background_tasks: BackgroundTasks, api_key: str = Depends(get_api_key)):
    """
    Chat endpoint that uses embeddings search and LLM for response generation.
    """
    try:
        # Load embeddings for the specified index
        document_list = load_embeddings(request.index_id)

        # Perform embeddings search
        search_results = embeddings.search(request.query, 5)  # Get top 5 relevant results
        context = "\n".join([document_list[idx[0]] for idx in search_results])

        # Create RAG prompt
        rag_prompt = f"Based on the following context, please answer the user's question:\n\nContext:\n{context}\n\nUser's question: {request.query}\n\nAnswer:"
        system_prompt = "You are a helpful assistant tasked with providing answers using the context provided"
        
        # Generate conversation_id if not provided
        conversation_id = request.conversation_id or str(uuid.uuid4())

        if request.enable_followup:
            # Prepare the request for the LLM service
            pass
            llm_request = {
                "query": rag_prompt,
                "model_id": 'openai/gpt-4o-mini',
                "conversation_id": conversation_id,
                "user_id": request.user_id
            endpoint_url = "https://pvanand-general-chat.hf.space/v2/followup-agent"
            
        else:
            llm_request = {
                "prompt": rag_prompt,
                "system_message": system_prompt,
                "model_id": request.model_id,
                "conversation_id": conversation_id,
                "user_id": request.user_id
            }
            endpoint_url = "https://pvanand-audio-chat.hf.space/llm-agent"
        
        logger.info(f"Starting chat response generation for user: {request.user_id} Full request: {llm_request}")
        async def response_generator():
            full_response = ""
            async for chunk in stream_llm_request(api_key, llm_request,endpoint_url):
                full_response += chunk
                yield chunk
            logger.info(f"Finished chat response generation for user: {request.user_id} Full response{full_response}")
            
            # Here you might want to add logic to save the conversation or perform other background tasks
            # For example:
            # background_tasks.add_task(save_conversation, request.user_id, conversation_id, request.query, full_response)

        
        return StreamingResponse(response_generator(), media_type="text/event-stream")

    except Exception as e:
        logger.error(f"Error in chat endpoint: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error in chat endpoint: {str(e)}")


@app.on_event("startup")
async def startup_event():
    check_and_index_csv_files()

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)