File size: 7,085 Bytes
2f85de4 8b73ab4 2f85de4 cda7b4b cf373a3 8b73ab4 2f85de4 795b69d 2f85de4 8b73ab4 2f85de4 459e9e9 2f85de4 8b73ab4 2f85de4 8b73ab4 459e9e9 2f85de4 cda7b4b 2f85de4 8b73ab4 cda7b4b 2f85de4 8b73ab4 2f85de4 8b73ab4 2f85de4 8b73ab4 2f85de4 cf373a3 2f85de4 cf373a3 cda7b4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
from models import build_model
from PIL import Image
import numpy as np
import torchvision
import math
import ninja
import torch
from tqdm import trange
import imageio
import requests
import argparse
import imageio
from scipy.spatial.transform import Rotation
from gradio_draggable import Draggable
checkpoint = 'clevr.pth'
state = torch.load(checkpoint, map_location='cpu')
G = build_model(**state['model_kwargs_init']['generator_smooth'])
o0, o1 = G.load_state_dict(state['models']['generator_smooth'], strict=False)
G.eval().cuda()
G.backbone.synthesis.input.x_offset =0
G.backbone.synthesis.input.y_offset =0
G_kwargs= dict(noise_mode='const',
fused_modulate=False,
impl='cuda',
fp16_res=None)
print('prepare finish', flush=True)
COLOR_NAME_LIST = ['cyan', 'green', 'purple', 'red', 'yellow', 'gray', 'purple', 'blue']
SHAPE_NAME_LIST = ['cube', 'sphere', 'cylinder']
MATERIAL_NAME_LIST = ['rubber', 'metal']
canvas_x = 800
canvas_y = 200
batch_size = 1
code = torch.randn(1, G.z_dim).cuda()
to_pil = torchvision.transforms.ToPILImage()
RT = torch.tensor([[ -1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.5000, -0.8660,
10.3923, 0.0000, -0.8660, -0.5000, 6.0000, 0.0000, 0.0000,
0.0000, 1.0000, 262.5000, 0.0000, 32.0000, 0.0000, 262.5000,
32.0000, 0.0000, 0.0000, 1.0000]], device='cuda')
obj_dict = {}
# init
fake_bevs = torch.zeros([1, 14, 256, 256], device='cuda').float()
_ = G(code, RT, fake_bevs)
def trans(x, y, z, length):
w = h = length
x = 0.5 * w - 128 + 256 - (x/9 + .5) * 256
y = 0.5 * h - 128 + (y/9 + .5) * 256
z = z / 9 * 256
return x, y, z
def objs_to_canvas(lst, length=256, scale = 2.6):
objs = []
for each in lst:
x, y, obj_id = each['x'], each['y'], each['id']
if obj_id not in obj_dict:
color = np.random.choice(COLOR_NAME_LIST)
shape = 'cube'
material = 'rubber'
rot = 0
obj_dict[obj_id] = [color, shape, material, rot]
color, shape, material, rot = obj_dict[obj_id]
x = -x / canvas_x * 16
y = y / canvas_y * 2
y *= 2
x += 1.0
y -= 1.5
z = 0.35
objs.append([x, y, z, shape, color, material, rot])
h, w = length, int(length *scale)
nc = 14
canvas = np.zeros([h, w, nc])
xx = np.ones([h,w]).cumsum(0)
yy = np.ones([h,w]).cumsum(1)
for x, y, z, shape, color, material, rot in objs:
y, x, z = trans(x, y, z, length)
feat = [0] * nc
feat[0] = 1
feat[COLOR_NAME_LIST.index(color) + 1] = 1
feat[SHAPE_NAME_LIST.index(shape) + 1 + len(COLOR_NAME_LIST)] = 1
feat[MATERIAL_NAME_LIST.index(material) + 1 + len(COLOR_NAME_LIST) + len(SHAPE_NAME_LIST)] = 1
feat = np.array(feat)
rot_sin = np.sin(rot / 180 * np.pi)
rot_cos = np.cos(rot / 180 * np.pi)
if shape == 'cube':
mask = (np.abs(+rot_cos * (xx-x) + rot_sin * (yy-y)) <= z) * \
(np.abs(-rot_sin * (xx-x) + rot_cos * (yy-y)) <= z)
else:
mask = ((xx-x)**2 + (y-yy)**2) ** 0.5 <= z
canvas[mask] = feat
canvas = np.transpose(canvas, [2, 0, 1]).astype(np.float32)
return canvas
@torch.no_grad()
def predict_local_view(lst):
canvas = torch.tensor(objs_to_canvas(lst)).cuda()[None]
bevs = canvas[..., 0: 0+256]
print(code.shape, RT.shape, bevs.shape)
gen = G(code, RT, bevs)
rgb = gen['gen_output']['image'][0] * .5 + .5
return to_pil(rgb)
@torch.no_grad()
def predict_local_view_video(lst):
canvas = torch.tensor(objs_to_canvas(lst)).cuda()[None]
bevs = canvas[..., 0: 0+256]
RT_array = np.array(RT[0].cpu())
rot = RT_array[:16].reshape(4,4)
trans = RT_array[16:]
rot_new = rot.copy()
r = Rotation.from_matrix(rot[:3, :3])
angles = r.as_euler("zyx",degrees=True)
v_mean, h_mean = angles[1], angles[2]
writer = imageio.get_writer('tmp.mp4', fps=25)
for t in np.linspace(0, 1, 50):
angles[1] = 0.5 * np.cos(t * 2 * math.pi) + v_mean
angles[2] = 1 * np.sin(t * 2 * math.pi) + h_mean
r = Rotation.from_euler("zyx",angles,degrees=True)
rot_new[:3,:3] = r.as_matrix()
new_RT = torch.tensor(np.concatenate([rot_new.flatten(), trans])[None]).cuda().float()
gen = G(code, new_RT, bevs)
rgb = gen['gen_output']['image'][0] * .5 + .5
writer.append_data(np.array(to_pil(rgb)))
writer.close()
return 'tmp.mp4'
@torch.no_grad()
def predict_global_view(lst):
canvas = torch.tensor(objs_to_canvas(lst)).cuda()[None]
length = canvas.shape[-1]
lines = []
for i in trange(0, length - 256, 10):
bevs = canvas[..., i: i+256]
gen = G(code, RT, bevs)
start = 128 if i > 0 else 0
lines.append(gen['gen_output']['image'][0, ..., start:128+32])
rgb = torch.cat(lines, 2)*.5+.5
return to_pil(rgb)
with gr.Blocks() as demo:
gr.Markdown(
"""
# BerfScene: Bev-conditioned Equivariant Radiance Fields for Infinite 3D Scene Generation
Qihang Zhang, Yinghao Xu, Yujun Shen, Bo Dai, Bolei Zhou*, Ceyuan Yang* (*Corresponding Author)<br>
[Arxiv Report](https://arxiv.org/abs/2312.02136) | [Project Page](https://zqh0253.github.io/BerfScene/) | [Github](https://github.com/zqh0253/BerfScene)
"""
)
gr.Markdown(
"""
### Quick Start
1. Drag and place objects in the canvas.
2. Click `Add object` to insert object into the canvas.
3. Click `Reset` to clean the canvas.
4. Click `Get local view` to synthesize local 3D scenes.
5. Click `Get global view` to synthesize global 3D scenes.
"""
)
with gr.Row():
with gr.Column():
drag = Draggable()
with gr.Row():
submit_btn_local = gr.Button("Get local view", variant='primary')
submit_btn_global = gr.Button("Get global view", variant='primary')
with gr.Column():
with gr.Row():
single_view_image = gr.Image(label='single view', interactive=False)
single_view_video = gr.Video(label='mutli-view', interactive=False, autoplay=True)
global_view_image = gr.Image(label='global view', interactive=False)
submit_btn_local.click(fn=predict_local_view, inputs=drag, outputs=single_view_image)
submit_btn_local.click(fn=predict_local_view_video, inputs=drag, outputs=single_view_video)
submit_btn_global.click(fn=predict_global_view, inputs=drag, outputs=global_view_image)
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, help='The port number', default=7860)
args = parser.parse_args()
demo.queue()
demo.launch(server_name='0.0.0.0', server_port=args.port, debug=True, show_error=True)
# demo.launch(server_name='0.0.0.0', server_port=7860, debug=True, show_error=True)
|