Dileep7729 commited on
Commit
5fc436a
·
verified ·
1 Parent(s): b1385de

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -2,38 +2,44 @@ import os
2
  from transformers import BlipProcessor, BlipForConditionalGeneration
3
  import gradio as gr
4
 
5
- # Load the token from the environment
6
- HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
7
 
8
- # Load the model and processor with the token
9
  processor = BlipProcessor.from_pretrained(
10
- "quadranttechnologies/Imageclassification",
11
  use_auth_token=HUGGINGFACE_TOKEN
12
  )
13
  model = BlipForConditionalGeneration.from_pretrained(
14
- "quadranttechnologies/Imageclassification",
15
  use_auth_token=HUGGINGFACE_TOKEN
16
  )
17
 
18
- # Define your Gradio interface and logic as before
19
  def generate_caption(image):
20
  try:
 
21
  inputs = processor(image, return_tensors="pt")
 
 
22
  outputs = model.generate(**inputs)
23
  caption = processor.decode(outputs[0], skip_special_tokens=True)
24
  return caption
25
  except Exception as e:
26
  return f"Error generating caption: {e}"
27
 
 
28
  interface = gr.Interface(
29
  fn=generate_caption,
30
- inputs=gr.Image(type="pil"),
31
- outputs="text",
32
  title="Image Captioning Model",
33
- description="Upload an image to receive a caption generated by the model."
34
  )
35
 
 
36
  if __name__ == "__main__":
37
  interface.launch(share=True)
38
 
39
 
 
 
2
  from transformers import BlipProcessor, BlipForConditionalGeneration
3
  import gradio as gr
4
 
5
+ # Load the Hugging Face token from the environment using the secret name
6
+ HUGGINGFACE_TOKEN = os.getenv("Image_classification")
7
 
8
+ # Load the processor and model with the token
9
  processor = BlipProcessor.from_pretrained(
10
+ "quadranttechnologies/qhub-blip-image-captioning-finetuned",
11
  use_auth_token=HUGGINGFACE_TOKEN
12
  )
13
  model = BlipForConditionalGeneration.from_pretrained(
14
+ "quadranttechnologies/qhub-blip-image-captioning-finetuned",
15
  use_auth_token=HUGGINGFACE_TOKEN
16
  )
17
 
18
+ # Function to generate captions for uploaded images
19
  def generate_caption(image):
20
  try:
21
+ # Prepare the image inputs for the model
22
  inputs = processor(image, return_tensors="pt")
23
+
24
+ # Generate the caption
25
  outputs = model.generate(**inputs)
26
  caption = processor.decode(outputs[0], skip_special_tokens=True)
27
  return caption
28
  except Exception as e:
29
  return f"Error generating caption: {e}"
30
 
31
+ # Set up the Gradio interface
32
  interface = gr.Interface(
33
  fn=generate_caption,
34
+ inputs=gr.Image(type="pil"), # Accepts image uploads
35
+ outputs="text", # Displays generated captions as text
36
  title="Image Captioning Model",
37
+ description="Upload an image to generate a caption using the fine-tuned BLIP model."
38
  )
39
 
40
+ # Launch the Gradio app
41
  if __name__ == "__main__":
42
  interface.launch(share=True)
43
 
44
 
45
+