r3gm's picture
Update scripts/main.py
1fa7834
raw
history blame
21.3 kB
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Optional
import uuid
from lcm.lcm_scheduler import LCMScheduler
from lcm.lcm_pipeline import LatentConsistencyModelPipeline
from lcm.lcm_i2i_pipeline import LatentConsistencyModelImg2ImgPipeline, LCMSchedulerWithTimestamp
from diffusers.image_processor import PipelineImageInput
# import modules.scripts as scripts
# import modules.shared
# from modules import script_callbacks
import os
import random
import time
import numpy as np
import gradio as gr
from PIL import Image, PngImagePlugin
import torch
scheduler = LCMScheduler.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7", subfolder="scheduler")
pipe = LatentConsistencyModelPipeline.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7", scheduler = scheduler, safety_checker = None)
DESCRIPTION = '''# Latent Consistency Model
Running [LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) | [Project Page](https://latent-consistency-models.github.io) | [Extension Page](https://github.com/0xbitches/sd-webui-lcm)
'''
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def save_image(img, metadata: dict):
save_dir = './outputs/LCM-txt2img/'
Path(save_dir).mkdir(exist_ok=True, parents=True)
seed = metadata["seed"]
unique_id = uuid.uuid4()
filename = save_dir + f"{unique_id}-{seed}" + ".png"
meta_tuples = [(k, str(v)) for k, v in metadata.items()]
png_info = PngImagePlugin.PngInfo()
for k, v in meta_tuples:
png_info.add_text(k, v)
img.save(filename, pnginfo=png_info)
return filename
def save_images(image_array, metadata: dict):
paths = []
with ThreadPoolExecutor() as executor:
paths = list(executor.map(save_image, image_array,
[metadata]*len(image_array)))
return paths
def generate(
prompt: str,
seed: int = 0,
width: int = 512,
height: int = 512,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
randomize_seed: bool = False,
use_fp16: bool = True,
use_torch_compile: bool = False,
use_cpu: bool = False,
progress=gr.Progress(track_tqdm=True)
) -> Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
selected_device = 'cuda'
if use_cpu:
selected_device = "cpu"
if use_fp16:
use_fp16 = False
print("LCM warning: running on CPU, overrode FP16 with FP32")
global pipe, scheduler
pipe = LatentConsistencyModelPipeline(
vae= pipe.vae,
text_encoder = pipe.text_encoder,
tokenizer = pipe.tokenizer,
unet = pipe.unet,
scheduler = scheduler,
safety_checker = pipe.safety_checker,
feature_extractor = pipe.feature_extractor,
)
# pipe = LatentConsistencyModelPipeline.from_pretrained(
# "SimianLuo/LCM_Dreamshaper_v7", scheduler = scheduler, safety_checker = None)
if use_fp16:
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
else:
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
# Windows does not support torch.compile for now
if os.name != 'nt' and use_torch_compile:
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
start_time = time.time()
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
original_inference_steps=50,
output_type="pil",
device = selected_device
).images
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
elapsed_time = time.time() - start_time
print("LCM inference time: ", elapsed_time, "seconds")
return paths, seed
def generate_i2i(
prompt: str,
image: PipelineImageInput = None,
strength: float = 0.8,
seed: int = 0,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
num_images: int = 4,
randomize_seed: bool = False,
use_fp16: bool = True,
use_torch_compile: bool = False,
use_cpu: bool = False,
progress=gr.Progress(track_tqdm=True),
width: Optional[int] = 512,
height: Optional[int] = 512,
) -> Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
selected_device = 'cuda'
if use_cpu:
selected_device = "cpu"
if use_fp16:
use_fp16 = False
print("LCM warning: running on CPU, overrode FP16 with FP32")
global pipe, scheduler
pipe = LatentConsistencyModelImg2ImgPipeline(
vae= pipe.vae,
text_encoder = pipe.text_encoder,
tokenizer = pipe.tokenizer,
unet = pipe.unet,
scheduler = None, #scheduler,
safety_checker = pipe.safety_checker,
feature_extractor = pipe.feature_extractor,
requires_safety_checker = False,
)
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
if use_fp16:
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
else:
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
# Windows does not support torch.compile for now
if os.name != 'nt' and use_torch_compile:
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
width, height = image.size
start_time = time.time()
result = pipe(
prompt=prompt,
image=image,
strength=strength,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=num_images,
original_inference_steps=50,
output_type="pil",
device = selected_device
).images
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
elapsed_time = time.time() - start_time
print("LCM inference time: ", elapsed_time, "seconds")
return paths, seed
import cv2
def video_to_frames(video_path):
# Open the video file
cap = cv2.VideoCapture(video_path)
# Check if the video opened successfully
if not cap.isOpened():
print("Error: LCM Could not open video.")
return
# Read frames from the video
pil_images = []
while True:
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB (OpenCV uses BGR by default)
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Convert numpy array to PIL Image
pil_image = Image.fromarray(rgb_frame)
# Append the PIL Image to the list
pil_images.append(pil_image)
# Release the video capture object
cap.release()
return pil_images
def frames_to_video(pil_images, output_path, fps):
if not pil_images:
print("Error: No images to convert.")
return
img_array = []
for pil_image in pil_images:
img_array.append(np.array(pil_image))
height, width, layers = img_array[0].shape
size = (width, height)
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
for i in range(len(img_array)):
out.write(cv2.cvtColor(img_array[i], cv2.COLOR_RGB2BGR))
out.release()
def generate_v2v(
prompt: str,
video: any = None,
strength: float = 0.8,
seed: int = 0,
guidance_scale: float = 8.0,
num_inference_steps: int = 4,
randomize_seed: bool = False,
use_fp16: bool = True,
use_torch_compile: bool = False,
use_cpu: bool = False,
fps: int = 10,
save_frames: bool = False,
# progress=gr.Progress(track_tqdm=True),
width: Optional[int] = 512,
height: Optional[int] = 512,
num_images: Optional[int] = 1,
) -> Image.Image:
seed = randomize_seed_fn(seed, randomize_seed)
torch.manual_seed(seed)
selected_device = 'cuda'
if use_cpu:
selected_device = "cpu"
if use_fp16:
use_fp16 = False
print("LCM warning: running on CPU, overrode FP16 with FP32")
global pipe, scheduler
pipe = LatentConsistencyModelImg2ImgPipeline(
vae= pipe.vae,
text_encoder = pipe.text_encoder,
tokenizer = pipe.tokenizer,
unet = pipe.unet,
scheduler = None,
safety_checker = pipe.safety_checker,
feature_extractor = pipe.feature_extractor,
requires_safety_checker = False,
)
# pipe = LatentConsistencyModelImg2ImgPipeline.from_pretrained(
# "SimianLuo/LCM_Dreamshaper_v7", safety_checker = None)
if use_fp16:
pipe.to(torch_device=selected_device, torch_dtype=torch.float16)
else:
pipe.to(torch_device=selected_device, torch_dtype=torch.float32)
# Windows does not support torch.compile for now
if os.name != 'nt' and use_torch_compile:
pipe.unet = torch.compile(pipe.unet, mode='max-autotune')
frames = video_to_frames(video)
if frames is None:
print("Error: LCM could not convert video.")
return
width, height = frames[0].size
start_time = time.time()
results = []
for frame in frames:
result = pipe(
prompt=prompt,
image=frame,
strength=strength,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
original_inference_steps=50,
output_type="pil",
device = selected_device
).images
if save_frames:
paths = save_images(result, metadata={"prompt": prompt, "seed": seed, "width": width,
"height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps})
results.extend(result)
elapsed_time = time.time() - start_time
print("LCM vid2vid inference complete! Processing", len(frames), "frames took", elapsed_time, "seconds")
save_dir = './outputs/LCM-vid2vid/'
Path(save_dir).mkdir(exist_ok=True, parents=True)
unique_id = uuid.uuid4()
_, input_ext = os.path.splitext(video)
output_path = save_dir + f"{unique_id}-{seed}" + f"{input_ext}"
frames_to_video(results, output_path, fps)
return output_path
examples = [
"portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography",
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece",
]
with gr.Blocks() as lcm:
with gr.Tab("LCM txt2img"):
gr.Markdown("Latent Consistency Models: Synthesizing High-Resolution Images with Few-step Inference")
gr.Markdown("Try the guide on Colab's free tier [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/InsightSolver-Colab/blob/main/Latent_Consistency_Models.ipynb)")
with gr.Row():
prompt = gr.Textbox(label="Prompt",
show_label=False,
lines=3,
placeholder="Prompt",
elem_classes=["prompt"])
run_button = gr.Button("Run", scale=0)
with gr.Row():
result = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery", grid=[2], preview=True
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(
label="Randomize seed across runs", value=True)
use_fp16 = gr.Checkbox(
label="Run LCM in fp16 (for lower VRAM)", value=False)
use_torch_compile = gr.Checkbox(
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_images = gr.Slider(
label="Number of images (batch count)",
minimum=1,
maximum=int(os.getenv("MAX_NUM_IMAGES")),
step=1,
value=1,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate
)
run_button.click(
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
num_images,
randomize_seed,
use_fp16,
use_torch_compile,
use_cpu
],
outputs=[result, seed],
)
with gr.Tab("LCM img2img"):
with gr.Row():
prompt = gr.Textbox(label="Prompt",
show_label=False,
lines=3,
placeholder="Prompt",
elem_classes=["prompt"])
run_i2i_button = gr.Button("Run", scale=0)
with gr.Row():
image_input = gr.Image(label="Upload your Image", type="pil")
result = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
preview=True
)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(
label="Randomize seed across runs", value=True)
use_fp16 = gr.Checkbox(
label="Run LCM in fp16 (for lower VRAM)", value=False)
use_torch_compile = gr.Checkbox(
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
num_images = gr.Slider(
label="Number of images (batch count)",
minimum=1,
maximum=int(os.getenv("MAX_NUM_IMAGES")),
step=1,
value=1,
)
strength = gr.Slider(
label="Prompt Strength",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.5,
)
run_i2i_button.click(
fn=generate_i2i,
inputs=[
prompt,
image_input,
strength,
seed,
guidance_scale,
num_inference_steps,
num_images,
randomize_seed,
use_fp16,
use_torch_compile,
use_cpu
],
outputs=[result, seed],
)
with gr.Tab("LCM vid2vid"):
show_v2v = False if os.getenv("SHOW_VID2VID") == "NO" else True
gr.Markdown("Not recommended for use with CPU. Duplicate the space and modify SHOW_VID2VID to enable it. 🚫💻")
with gr.Tabs(visible=show_v2v) as tabs:
#with gr.Tab("", visible=show_v2v):
with gr.Row():
prompt = gr.Textbox(label="Prompt",
show_label=False,
lines=3,
placeholder="Prompt",
elem_classes=["prompt"])
run_v2v_button = gr.Button("Run", scale=0)
with gr.Row():
video_input = gr.Video(label="Source Video")
video_output = gr.Video(label="Generated Video")
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
randomize=True
)
randomize_seed = gr.Checkbox(
label="Randomize seed across runs", value=True)
use_fp16 = gr.Checkbox(
label="Run LCM in fp16 (for lower VRAM)", value=False)
use_torch_compile = gr.Checkbox(
label="Run LCM with torch.compile (currently not supported on Windows)", value=False)
use_cpu = gr.Checkbox(label="Run LCM on CPU", value=True)
save_frames = gr.Checkbox(label="Save intermediate frames", value=False)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale for base",
minimum=2,
maximum=14,
step=0.1,
value=8.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps for base",
minimum=1,
maximum=8,
step=1,
value=4,
)
with gr.Row():
fps = gr.Slider(
label="Output FPS",
minimum=1,
maximum=200,
step=1,
value=10,
)
strength = gr.Slider(
label="Prompt Strength",
minimum=0.1,
maximum=1.0,
step=0.05,
value=0.5,
)
run_v2v_button.click(
fn=generate_v2v,
inputs=[
prompt,
video_input,
strength,
seed,
guidance_scale,
num_inference_steps,
randomize_seed,
use_fp16,
use_torch_compile,
use_cpu,
fps,
save_frames
],
outputs=video_output,
)
if __name__ == "__main__":
lcm.queue().launch()