File size: 3,435 Bytes
7f871a4
 
 
7d54ba7
7f871a4
 
 
ee20381
 
 
 
 
 
 
8f77a4e
 
5aa8efd
8f77a4e
ee20381
 
8f77a4e
c92b67b
ee20381
 
 
 
 
 
 
5aa8efd
ee20381
7d54ba7
 
 
 
ee20381
 
 
7d54ba7
 
 
 
 
 
 
ee20381
 
 
 
 
 
 
 
 
7d54ba7
 
ee20381
 
 
7d54ba7
 
 
ee20381
7d54ba7
7f871a4
 
 
 
8e89c60
ee20381
c3efa02
8e89c60
7f871a4
 
 
 
 
 
 
 
 
 
 
6169018
 
 
 
 
 
 
8f77a4e
 
ee20381
7d54ba7
 
 
ee20381
 
 
 
 
 
5aa8efd
 
 
 
 
 
 
 
 
ee20381
 
 
 
7f871a4
 
 
ee20381
 
 
7f871a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import PIL.Image
import torch
from diffusers import LCMScheduler, AutoPipelineForText2Image
from fastapi import FastAPI
import uvicorn
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import RedirectResponse, StreamingResponse
import io
import os
from pathlib import Path
from db import Database
import uuid
import logging
from fastapi import FastAPI, Request, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from asyncio import Lock

logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO"))

SPACE_ID = os.environ.get("SPACE_ID", "")
DEV = os.environ.get("DEV", "0") == "1"

DB_PATH = Path("/data/cache") if SPACE_ID else Path("./cache")
IMGS_PATH = DB_PATH / "imgs"
DB_PATH.mkdir(exist_ok=True, parents=True)
IMGS_PATH.mkdir(exist_ok=True, parents=True)

database = Database(DB_PATH)
generate_lock = Lock()


model_id = "segmind/Segmind-Vega"
adapter_id = "segmind/Segmind-VegaRT"

dtype = torch.bfloat16
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
    pipe = AutoPipelineForText2Image.from_pretrained(
        model_id, torch_dtype=torch.float16, variant="fp16"
    )
    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    pipe.to("cuda")
    pipe.load_lora_weights(adapter_id)
    pipe.fuse_lora()


def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
) -> PIL.Image.Image:

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        generator=generator,
        num_inference_steps=4,
        guidance_scale=0,
    ).images[0]

    return image


app = FastAPI()
origins = [
    "https://huggingface.co",
    "http://huggingface.co",
    "https://huggingface.co/",
    "http://huggingface.co/",
]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


@app.middleware("http")
async def validate_origin(request: Request, call_next):
    if DEV:
        return await call_next(request)
    if request.headers.get("referer") not in origins:
        raise HTTPException(status_code=403, detail="Forbidden")
    return await call_next(request)


@app.get("/image")
async def generate_image(
    prompt: str, negative_prompt: str = "", seed: int = 2134213213
):
    cached_img = database.check(prompt, negative_prompt, seed)
    if cached_img:
        logging.info(f"Image found in cache: {cached_img[0]}")
        return StreamingResponse(open(cached_img[0], "rb"), media_type="image/jpeg")

    logging.info(f"Image not found in cache, generating new image")
    async with generate_lock:
        pil_image = generate(prompt, negative_prompt, seed)
        img_id = str(uuid.uuid4())
        img_path = IMGS_PATH / f"{img_id}.jpg"
        pil_image.save(img_path)
        img_io = io.BytesIO()
        pil_image.save(img_io, "JPEG")
        img_io.seek(0)
        database.insert(prompt, negative_prompt, str(img_path), seed)

    return StreamingResponse(img_io, media_type="image/jpeg")


@app.get("/")
async def main():
    # redirect to https://huggingface.co/spaces/multimodalart/stable-cascade
    return RedirectResponse(
        "https://multimodalart-stable-cascade.hf.space/?__theme=system"
    )


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)