Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import numpy as np | |
import pandas as pd | |
import dill | |
import pickle | |
from sklearn.metrics import r2_score | |
from sklearn.model_selection import GridSearchCV | |
from src.exception import CustomException | |
def eval_model(true, predicted): | |
r2_square = r2_score(true, predicted) | |
return r2_square | |
def save_object(file_path , obj): | |
try: | |
dir_path = os.path.dirname(file_path) | |
os.makedirs(dir_path,exist_ok= True) | |
with open(file_path,"wb") as file_obj: | |
pickle.dump(obj,file_obj) | |
except Exception as e: | |
raise CustomException(e,sys) | |
def evaluate_model(X,Y,X_test,Y_test,Models,Param): | |
try: | |
report = {} | |
for i in range(len(list(Models))): | |
model = list(Models.values())[i] | |
para = Param[list(Models.keys())[i]] | |
gs = GridSearchCV(model,para,cv=3) | |
gs.fit(X,Y) | |
model.set_params(**gs.best_params_) | |
model.fit(X,Y) | |
# Make predictions | |
y_train_pred = model.predict(X) | |
y_test_pred = model.predict(X_test) | |
# Evaluate Train and Test dataset | |
model_test_r2 = eval_model(Y_test, y_test_pred) | |
report[(list(Models.keys())[i])] = model_test_r2 | |
return report | |
except Exception as e: | |
raise CustomException(e,sys) | |