chatwithphi / app.py
rajeshthangaraj1's picture
Create app.py
c9c01d6 verified
raw
history blame
1.41 kB
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
from google.colab import drive
# Install bitsandbytes and accelerate
!pip install bitsandbytes
!pip install accelerate
# Mount Google Drive
drive.mount('/content/drive')
# Set the path to the local directory where the model and tokenizer are saved
MODEL_PATH = "/content/drive/My Drive/phi35"
# Load the tokenizer from the local directory
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
# Load the model with 8-bit quantization
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map='auto',
load_in_8bit=True
)
# Create the text-generation pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=256, # Adjusted for faster inference
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.8,
device_map={'': 0}
)
# Define the function for the Gradio interface
def chat_with_phi(message):
response = pipe(message)
return response[0]['generated_text']
# Set up the Gradio interface
app = gr.Interface(
fn=chat_with_phi,
inputs=gr.Textbox(label="Type your message:"),
outputs=gr.Textbox(label="Phi 3.5 Responds:"),
title="Phi 3.5 Text Chat",
description="Chat with Phi 3.5 model. Ask anything!",
theme="default"
)
# Launch the app
app.launch(debug=True)